Skip to main content Accessibility help
×
Home
Hostname: page-component-78dcdb465f-vddjc Total loading time: 0.222 Render date: 2021-04-19T01:13:13.885Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Fowler-Nordheim current modeling of metal/ultra-thin oxide/semiconductor structures in the inversion mode, defects characterization*

Published online by Cambridge University Press:  25 June 2004

Y. Khlifi
Affiliation:
Université Mohamed Premier, Faculté des Sciences, Dépt. de Physique, Laboratoire d'Électronique Appliquée et d'Automatique (L.E.A.A), Route Sidi Maafa, B.P. 524, Oujda, Morocco
K. Kassmi
Affiliation:
Université Mohamed Premier, Faculté des Sciences, Dépt. de Physique, Laboratoire d'Électronique Appliquée et d'Automatique (L.E.A.A), Route Sidi Maafa, B.P. 524, Oujda, Morocco
A. Aziz
Affiliation:
Université Mohamed Premier, Faculté des Sciences, Dépt. de Physique, Laboratoire d'Électronique Appliquée et d'Automatique (L.E.A.A), Route Sidi Maafa, B.P. 524, Oujda, Morocco
F. Olivie
Affiliation:
Laboratoire d'Analyse et d'Architecture des Systèmes (LAAS-CNRS), 7 avenue du Colonel Roche, 31077 Toulouse, France
Corresponding
Get access

Abstract

In this paper, we present a simple model of Fowler-Nordheim (FN) current of metal/ultra-thin oxide/semiconductor (MOS) structures biased in the inversion mode ( $V_{g }> 0$ ) (injection of electrons from the semiconductor). The oxide thickness varies from 45 Å to 110 Å, the gate is in chrome and the semiconductor is of P type. From the general models of the conduction by FN effect and by assuming a continuum energy in the inversion layer, we have shown by using the Wentzel-Kramers-Brillouin (WKB) approximation that the modeling of the FN current, cannot be made by using the classical model generally used in the case of electrons injection from the metal ( $V_{g }< 0$ ). However, it requires to introduce in the classical model a corrective term due to the effects of the temperature, the oxide/semiconductor interface degeneracy (the Fermi energy is localized in the semiconductor conduction band) and the Schottky effect. The results obtained from the numerical simulation show that these effects, at the ambient temperature, on the potential barrier at the oxide/semiconductor interface is lower than 4% and the conduction pre-exponential value (K 1) is higher than that obtained in the classical model ( $K_1^o =10^{-6}$  A/V2) [J. Appl. Phys. 40, 278 (1969)]. These results are validated experimentally by modeling the current-voltage characteristics of MOS structures where the oxide thickness is 109 Å. For oxide thickness lower than 100 Å, we have found that the results of simulation disagree with those experimental. We have attributed this disagreement to the degradation of the conduction parameters by the presence of leakage current before stressing the MOS structure (LCBS). This leakage current is attributed to defects localized in the oxide layer. We have shown that the leakage current is of FN type and deduced the effective barrier of defects. By taking account of this barrier value and the corrective term due to the temperature, the oxide/semiconductor interface degeneracy and the Schottky effects (TDSEs), we have determined the defects effective area. From the comparison between these results and those obtained in the case of electrons injection from the metal ( $V_{g} < 0$ ) [Eur. Phys. J. Appl. Phys. 9, 239 (2000)], we have concluded that the defects depth in the oxide layer is identical to the oxide thickness.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2004

Access options

Get access to the full version of this content by using one of the access options below.

Footnotes

*

This work has been partly supported by le comité Maroco-Français ‘Action Intégrée’, N° MA/03/78 and le Programme Thématique d'Appui à la Recherche Scientifique (PROTARS III), N° D43/06.

References

Khlifi, Y., Kassmi, K., Roubi, L., Maimouni, R., Eur. Phys. J. Appl. Phys. 9, 239 (2000) CrossRef
Concannon, A., Keeney, S., Mathewson, A., Bez, R., Lombardi, C., IEEE Trans. Electr. Dev. 40, 1258 (1993) CrossRef
Fukuda, H., Hayashi, T., Uchiyama, A., Iwabuchi, T., Electron. Lett. 29, 947 (1993) CrossRef
Harari, E., Appl. Phys. Lett. 30, 601 (1977) CrossRef
Harari, E., J. Appl. Phys. 49, 2478 (1978) CrossRef
Kassmi, K., Prom, J.L., Sarrabayrouse, G., Solid-State Electron. 34, 509 (1991) CrossRef
Sarrabayrouse, G., Prom, J.L., Kassmi, K., IEE Proc. 137, 475 (1990)
Fowler, R.H., Nordheim, L., Proc. Roy. Soc. Lond. 119, 173 (1928) CrossRef
Lenzlinger, M., Snow, E.H., J. Appl. Phys. 40, 278 (1969) CrossRef
Snow, E.H., Solid-State Commun. 5, 813 (1967) CrossRef
Waters, R., Zeghbroeck, B.V., Appl. Phys. Lett. 75, 2410 (1999) CrossRef
Soeog-Ju Oh, Y.T. Yeow, Solid-State Electron. 31, 1113 (1988)
Liang, M.S., Chang, C., Yeow, Y.T., Hu, C., Brodersen, R.W., IEEE Electron Device Lett. 4, 350 (1983) CrossRef
Weinberg, Z.A., J. Appl. Phys. 53, 5052 (1982) CrossRef
Chang Chi, Ph.D. thesis, Berkely (1984)
Solomon, P.M., Appl. Phys. Lett. 30, 597 (1977) CrossRef
Qing-An Huang, , Appl. Surf. Sci. 93, 77 (1996) CrossRef
Qing-An Huang, J.K.O. Sin, M.C. Poon, Appl. Surf. Sci. 119, 229 (1997) CrossRef
Wei-Kai Shih, E.X. Wang, S. Jallepalli, F. Leon, C.M. Maziar, Al F. Taschjr, Solid-State Electron. 42, 997 (1998) CrossRef
Ghetti, A., Chun-Ting Liu, M. Mastrapasqua, E. Sangiorgi, Solid-State Electron. 44, 1523 (2000) CrossRef
Stratton, R., J. Phys. Chem. Sol. 23, 1177 (1962) CrossRef
Simmons, J.G., J. Appl. Phys. 34, 1793 (1963) CrossRef
K. Naruke, S. Taguchi, M. Wada, Technical Digest for the IEEE International Electron Devices Meeting (IEEE, New York, 1988), p. 424
De Salvo, B., Ghibaudo, G., Pananakakis, G., Guillaumot, B., Reimbold, G., Solid-State Electron. 44, 895 (2000) CrossRef
Dumin, D.J., Maddux, J.R., IEEE Trans. Electron Devices 40, 986 (1993) CrossRef
Scott, R.S., Dumin, D.J., J. Electrochem. Soc. 142, 586 (1995) CrossRef
Dumin, D.J., Cooper, J.R., Maddux, J.R., Scott, R.S., Wong, D.-P., J. Appl. Phys. 76, 319 (1994) CrossRef
Meinertzhagen, A., Petit, C., Jourdain, M., Mondon, F., Solid-State Electron. 44, 623 (2000) CrossRef
Chou, A.I., Lai, K., Kumar, K., Chowdhury, P., Lee, J.C., Appl. Phys. Lett. 70, 3407 (1997) CrossRef
Duan, X., Yuan, J.S., Solid-State Electron. 44, 1703 (2000) CrossRef
Ang, C.-H., Ling, C.-H., Cho, B.-J., Kim, S.-J., Cheng, Z., Solid-State Electron. 44, 2001 (2000) CrossRef
Ielmini, D., Spinelli, A.S., A.L. lacaita, A. Martinelli, G. Ghidini, Solid-State Electron. 45, 1361 (2001) CrossRef
Kern, W., Puotinen, D.A., RCA Rev. 31, 187 (1970)
Prom, J.L., Castagne, J., Sarrabayrouse, G., Munoz-Yague, A., IEE Proc. 135, 20 (1988)
Sarrabayrouse, G., Compabadal, F., Prom, J.L., IEE Proc. 36, 215 (1989)
Siergiej, R.R., White, M.H., Saks, N.S., Solid-State Electron. 35, 843 (1992) CrossRef
Ma, Y., Li, Z., Liu, L., Tian, L., Yu, Z., Solid-State Electron. 44, 401 (2000) CrossRef
S.M. Sze, Physics of semiconductors Devices (J. Wiley, New York, 1981)
Khlifi, Y., Kassmi, K., Roubi, L., Maimouni, R., Mor. J. Condens. Matt. MJCM 3, 44 (2000)
K. Kassmi, R. Maimouni, the 13th International Conference on Microelectronics (ICM 2001) Rabat, Morocco, 2001, p. 67
Y. Khlifi, K. Kassmi, L. Roubi, R. Maimouni, Mediterranean Conference on Electronics and Automatic MCEA'98, Marrakech (Maroc) 17-19/09/1998
Ma, Y., Li, Z., Liu, L., Tian, L., Yu, Z., Solid-State Electron. 45, 267 (2001) CrossRef
Kassmi, K., Maimouni, R., Sarrabayrouse, G., Eur. Phys. J. Appl. Phys. 8, 171 (1999) CrossRef
Hegarty, C.J., Lee, J.C., Chenming Hu, Solid-State Electron. 34, 1207 (1991) CrossRef
Seiji Horiguchi, Hideo, Yoshino, J. Appl. Phys. 58, 1597 (1985)
S.S. Gong, M.E. Burnham, N.D. Theodore, D.K. Schroder, IEEE Trans. Electron Devices ED-40 (1993)
Weinberg, Z.A., Fischetti, M.V., J. Appl. Phys. 57, 443 (1985) CrossRef
K. Kassmi, Doctorat de l'Université Paul Sabatier, Toulouse (1991), p. 904
Khlifi, Y., Kassmi, K., Roubi, L., Maimouni, R., Phys. Stat. Sol. A 182, 737 (2000) 3.0.CO;2-6>CrossRef
K. Kassmi, Doctorat d'État, Université Mohamed Premier, Oujda, Morocco (1996)
Stern, F., Phys. Rev. B 5, 4891 (1972) CrossRef
Y. Khlifi, Doctorat de l'Université Mohamed Premier, Oujda, Morocco (2001)
Temple Boyer, P., Olivié, F., Kassmi, K., Scheid, E., Sarrabayrouse, G., Martinez, A., Solid-State Electron. 41, 951 (1997) CrossRef
Kassmi, K., Aziz, A., Olivie, F., Nanotechnology 15, 237 (2004) CrossRef

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 2 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 19th April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Fowler-Nordheim current modeling of metal/ultra-thin oxide/semiconductor structures in the inversion mode, defects characterization*
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Fowler-Nordheim current modeling of metal/ultra-thin oxide/semiconductor structures in the inversion mode, defects characterization*
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Fowler-Nordheim current modeling of metal/ultra-thin oxide/semiconductor structures in the inversion mode, defects characterization*
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *