Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-19T18:05:00.186Z Has data issue: false hasContentIssue false

Effect of annealing on properties of CuInS2 thin films

Published online by Cambridge University Press:  14 April 2005

R. Brini*
Affiliation:
Laboratoire de Photovoltaïque et Matériaux Semiconducteurs (LPMS), École Nationale d'Ingénieurs de Tunis, BP 37, le Belvédère, 1002 Tunis, Tunisia
M. Kanzari
Affiliation:
Laboratoire de Photovoltaïque et Matériaux Semiconducteurs (LPMS), École Nationale d'Ingénieurs de Tunis, BP 37, le Belvédère, 1002 Tunis, Tunisia
B. Rezig
Affiliation:
Laboratoire de Photovoltaïque et Matériaux Semiconducteurs (LPMS), École Nationale d'Ingénieurs de Tunis, BP 37, le Belvédère, 1002 Tunis, Tunisia
J. Werckmann
Affiliation:
Institut de Physique et Chimie des Matériaux, Strasbourg, France
Get access

Abstract

Surface morphology, structural and optical properties of CuInS2 thin films grown by the single source thermal evaporation in vacuum have been studied. The films were annealed from 250 to 550 °C in argon atmosphere with low oxygen concentration (O2 < 2 ppm). CuInS2 films are characterized by scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), X-ray diffraction (XRD) and optical transmittance and reflectance spectra. The maximum grain size of the sample after annealing at 550 °C was over 150 nm. The electron dispersion spectroscopy and X-ray analysis concludes that the polycrystalline CuInS2 thin film after annealing above 200 °C were sulphur-poor. We obtain CuInS2 layers with high structural and optical quality at annealing temperature above 450 °C with formation of In2O3 as minority phase. The band gap energy of the CuInS2 films after annealing above 450 °C was about 1.50 eV which perfectly matches the solar spectrum for energy conversion.

Keywords

Type
Research Article
Copyright
© EDP Sciences, 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Contreras, A., Egass, B., Pamanathan, K., Hiltner, J., Swartzlander, A., Hasoon, F., Noufi, R., Prog. Photovol. Res. Appl. 7, 311 (1999) 3.0.CO;2-G>CrossRef
Kasmerski, L.L., Ayyagari, M.S., Sanborn, G.A., J. Appl. Phys. 46, 4865 (1975) CrossRef
Hwang, H.L., Sun, C.Y., Eang, C.S, Chang, S.D., Cheng, C.H., Yang, M.H., Tuwan-Mu, T., J. Cryst. Growth 55, 116 (1981) CrossRef
Hwang, H., Cheng, C.L., Liu, L.M., Liu, Y.C., Sun, C.Y., Thin Solid Films 67, 83 (1980) CrossRef
Pamplin, B., Feiglson, R.S., Thin Solid Films 60, 141 (1979) CrossRef
S. Verma, T.W.F. Russel, R. Birkmire, in Proc. 23rd IEEE Photovoltaic Specialists Conf. Louisville, 1993 (IEEE, New York, 1993), p. 431
Watanabe, T., Nakazawa, H., Matsui, M., Jpn J. Appl. Phys. 38, L430 (1999) CrossRef
Watanabe, T., Yamamoto, T., Jpn J. Appl. Phys. 39, L1280 (2000) CrossRef
S.F. Bartram, Handbook of X-Rays, edited by E.F. Kaelebe (McGraw-Hill, New York, 1967), Chap. 17
Fray, F., Lloyd, P., Thin Solid Films 58, 29 (1979) CrossRef
Scheer, R., Diesner, K., Lewerenz, H.J., Thin Solid Films 268, 130 (1995) CrossRef
Neumann, H., Hörig, W., Reccius, E., Miller, W., Kuhn, G., Solid State Commun. 27, 449 (1978) CrossRef
Kindyak, V.V., Gremenonok, V.F., Bodnar, I.V., Rud Y, V.u, G.A. Madvedkin, Thin Solid Films 250, 33 (1994) CrossRef
Tell, B., Shay, J.L., Kasper, H.M., Phys. Rev. B 4, 2463 (1971) CrossRef
Onnagawa, H., Miyashita, K., Jpn J. App. Phys. 23, 965 (1985) CrossRef
Nishikawa, N.N., Aksenov, I., Sinzato, T., Sakamoto, T., Sato, K., Jpn J. Appl. Phys. 34, L975 (1995) CrossRef