Hostname: page-component-77c89778f8-swr86 Total loading time: 0 Render date: 2024-07-18T14:31:50.010Z Has data issue: false hasContentIssue false

Conductance of disordered semiconducting nanowires and carbon nanotubes: a chain of quantum dots

Published online by Cambridge University Press:  24 July 2009

J.-F. Dayen
Affiliation:
Laboratoire des Solides Irradiés, École Polytechnique, 91128 Palaiseau Cedex, France
T. L. Wade
Affiliation:
Laboratoire des Solides Irradiés, École Polytechnique, 91128 Palaiseau Cedex, France
G. Rizza
Affiliation:
Laboratoire des Solides Irradiés, École Polytechnique, 91128 Palaiseau Cedex, France
D. S. Golubev
Affiliation:
Forschungszentrum Karlsruhe, Institut für Nanotechnologie, 76021 Karlsruhe, Germany
C.-S. Cojocaru
Affiliation:
Laboratoire de Physique des interfaces et couches minces, École Polytechnique, 91128 Palaiseau, France
D. Pribat
Affiliation:
Laboratoire de Physique des interfaces et couches minces, École Polytechnique, 91128 Palaiseau, France
X. Jehl
Affiliation:
CEA-Grenoble, DRFMC/SPSMS/LaTEQS, 17 rue des Martyrs, 38054 Grenoble Cedex 09, France
M. Sanquer
Affiliation:
CEA-Grenoble, DRFMC/SPSMS/LaTEQS, 17 rue des Martyrs, 38054 Grenoble Cedex 09, France
J.-E. Wegrowe*
Affiliation:
Laboratoire des Solides Irradiés, École Polytechnique, 91128 Palaiseau Cedex, France
Get access

Abstract

A comparative study of the low temperature conductivity of an ensemble of multiwall carbon nanotubes and semiconductor nanowires is presented. The quasi one-dimensional samples are made in nanoporous templates by electrodeposition and CVD growth. Three different structures are studied in parallel: multiwall carbon nanotubes, tellurium nanowires, and silicon nanowires. It is shown that the Coulomb blockade regime dominates the electronic transport below 50 K, together with weak and strong localization effects. In the Coulomb blockade regime, a scaling law of the conductance measured as a function of the temperature and the voltage is systematically observed. This allows a single scaling parameter α to be defined. This parameter accounts for the specific realization of the “disorder”, and plays the role of a fingerprint for each sample. Correlations between α and the conductance measured as a function of temperature and voltage, as a function of the perpendicular magnetic field, and as a function of the temperature and voltage in the localized regime below 1 K have been performed. Three universal laws are reported. They relate the coefficient α (1) to the normalized Coulomb blockade conductance $G_{T}(\alpha)$, (2) to the phase coherence length $l_{\phi}(\alpha)$, and (3) to the activation energy $E_{a} (\alpha)$. These observations suggest a description of the wires and tubes in terms of a chain of quantum dots; the wires and tubes break into a series of islands. The quantum dots are defined by conducting islands with a typical length on the order of the phase coherence length separated by poorly conducting regions (low density of carriers or potential barriers due to defects). A corresponding model is developed in order to put the three universal laws in a common frame.


Keywords

Type
Research Article
Copyright
© EDP Sciences, 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

See, e.g. for Si nanostructures: A.T. Tilke et al., Prog. Quant. Electron. 25, 97 (2001)
Evans, G.J., Mizuta, H., Ahmed, H., Jpn J. Appl. Phys. 40, 5837 (2001) CrossRef
Tans, S.J., Dekker, C., Nature 404, 834 (2000) CrossRef
Bockrath, M., Liang, W., Bozovic, D., Hafner, J.H., Lieber, C.M., Tinkham, M., Park, H., Science 291, 283 (2001) CrossRef
Bleszynski, A.C., Zwanenburg, F.A., Westervelt, R.M., Roest, A.L., Bakkers, E.P.A.M., Kouwenhoven, L.P., Nano Lett. 7, 2559 (2007) CrossRef
Sakamoto, T., Kawaura, H., Baba, T., Appl. Phys. Lett. 72, 795 (1998) CrossRef
Augke, R., Eberhardt, W., Single, C., Prins, F.E., Wharam, D.A., Kern, D.P., Appl. Phys. Lett. 76, 2065 (2000) CrossRef
Hofheinz, M., Jehl, X., Sanquer, M., Molas, G., Vinet, M., Deleonibus, S., Appl. Phys. Lett. 89, 143504 (2006) CrossRef
Rochefort, A., Salahub, D.R., Avouris, P., Chem. Phys. Lett. 297, 45 (1998) CrossRef
Hertel, T., Walkup, R., Avouris, P., Phys. Rev. B 58, 13870 (1998) CrossRef
Bezryadin, A., Verschueren, A.R.M., Tans, S.J., Dekker, C., Phys. Rev. Lett. 80, 4036 (1998) CrossRef
Hertel, T., Martel, R., Avouris, P., J. Phys. Chem. B 102, 910 (1998) CrossRef
Bachtold, A., Henny, M., Terrier, C., Strunk, C., Schoenenberger, C., Salvetat, J.P., Bonard, J.M., Forro, L., Appl. Phys. Lett. 73, 274 (1998) CrossRef
Kruger, M., Widmer, I., Nussbaumer, T., Buitelaar, M., Schoenenberger, C., New J. Phys. 5, 138 (2003)
Minot, E.D., Yaish, Y., Sazonova, V., Park, J.Y., Brink, M., McEuen, P.L., Phys. Rev. Lett. 90, 156401 (2003) CrossRef
Bachtold, A., Fuhrer, M.S., Plyasunov, S., Forero, M., Anderson, E.H., Zettl, A., McEuen, P.L., Phys. Rev. Lett. 84, 6082 (2000) CrossRef
Wade, T.L., Wegrowe, J.-E., Eur. Phys. J. Appl. Phys. 29, 3 (2005) CrossRef
L. Forro, C. Schoenenberger, in Carbon Nanotubes, edited by M.S. Dresselhaus, G. Dresselhaus, P. Avouris (Springer, Berlin, Heidelberg, New York, 2001)
Z. Yao, C. Dekker, Ph. Avouris, in Carbon Nanotubes, edited by M.S. Dresselhaus, G. Dresselhaus, Ph. Avouris (Springer-Verlag, Berlin, Heidelberg, New York, 2001)
H. Dai, A. Javey, E. Pop, D. Mann, W. Kim, Y. Lu, Nano Lett.1, 1 (2006) and reference therein
Understanding Carbon Nanotubes From Basics to Applications, edited by A. Loiseau, P. Launois, P. Petit, S. Roche, J.-P. Salvetat, Series: Lecture Notes in Physics, Vol. 677 (Springer, Berlin, 2006)
Hoffer, X., Klinke, C., Bonard, J.-M., Gravier, L., Wegrowe, J.-E., Europhys. Lett. 67, 103 (2004) CrossRef
Dayen, J.-F., Hoffer, X., Wade, T.L., Konczykowski, M., Wegrowe, J.-E., Phys. Rev. B 72, 073402 (2005) CrossRef
Dayen, J.-F., Jehl, X., Wade, T.L., Sanquer, M., Wegrowe, J.-E., Phys. Stat. Sol. (b) 243, 3413 (2006) CrossRef
Schoenenberger, C., Bachtold, A., Strunk, C., Salvetat, J.-P., Forro, L., Appl. Phys. A 69, 283 (1999)
Stojetz, B., Hagen, C., Hendlmeier, C., Ljubovic, E., Forro, L., Strunk, C., New J. Phys. 6, 27 (2004) CrossRef
Kang, N., Hu, J.S., Kong, W.J., Lu, L., Zhang, D.L., Pan, Z.W., Xie, S.S., Phys. Rev. B 66, 241403 (2002) CrossRef
Haruyama, J., Takesue, I., Kato, S., Takazawa, K., Sato, Y., Appl. Surf. Sci. 175-176, 597 (2001) CrossRef
Bachtold, A. et al., Nature 397, 673 (1999)
Lee, J.-O. et al., Phys. Rev. B 61, 16362 (2001)
Fujiwara, A., Tomiyama, K., Suematsu, H., Yumura, M., Uchida, K., Phys. Rev. B 60, 13492 (1999) CrossRef
Fedorov, G., Lassagne, B., Sagnes, M., Raquet, B., Broto, J.-M., Triozon, F., Roche, S., Flahaut, E., Phys. Rev. Lett. 94, 066801 (2005) CrossRef
Man, T.H., Morpurgo, A.F., Phys. Rev. Lett. 95, 026801 (2005) CrossRef
Frank, S., Poncharal, P., Wang, Z.L., de Heer, W.A., Science 280, 1744 (1998) CrossRef
Stojetz, B., Miko, C., Forro, L., Strunk, C., Phys. Rev. Lett. 94, 186802 (2005) CrossRef
Triozon, F., Roche, S., Rubio, A., Mayou, D., Phys. Rev. B 69, 121410 (2004) CrossRef
Dayen, J.-F., Rumyantseva, A., Ciornei, C., Cojocaru, C.S., Wade, T.L., Pribat, D., Wegrowe, J.-E., Appl. Phys. Lett. 90, 173110 (2007) CrossRef
Altshuler, B.L., Aronov, A.G., Khmelnitskii, D.E., J. Phys. C 15, 7367 (1982) CrossRef
B.L. Altshuler, A.G. Aronov, in Electron Electron Interactions in Disordered Systems, edited by M. Pollak, A.L. Efros (North-Holland, Amsterdam, 1985)
E. Akkermans, G. Montambaux, Mesoscopic Physics of Electrons and Photons (Cambdrige University Press, Cambridge, 2007)
Fuhrer, M.S., Crespi, V.H., Cohen, M.L., Zettl, A., Solid State Commun. 109, 105 (1999) CrossRef
H. Grabert, M.H. Devoret, Single Charge Tunneling, Vol. 294 (Plenum Press, New York, 1992)
Pierre, F., Pothier, H., Joyez, P., Birge, N.O., Esteve, D., Devoret, M.H., Phys. Rev. Lett. 86, 1590 (2001) CrossRef
Rollbuhler, J., Grabert, H., Phys. Rev. Lett. 87, 126804 (2001)
Egger, R., Gogolin, A.O., Chem. Phys. 281, 447 (2002) CrossRef
Fontcuberta, A. i Morral, J. Arbiol, J.D. Prades, A. Cirera, J.R. Morante, Adv. Mater. 19, 1347 (2007)
Arbiol, J., Kalache, B., Roca, P. i Cabarrocas, J.R. Morante, A. Fontcuberta i Morral, Nanotechnology 18, 305606 (2007) CrossRef
Bockrath, M., Cobden, D.H., Lu, J., Rinzler, A.G., Smalley, R.E., Balents, L., McEuen, P.L., Nature 397, 598 (1999)
Yao, Z., Postma, H.W.C., Balents, L., Dekker, C., Nature 402, 273 (1999)
H.W.C. Postma, M. de Jonge, C. Dekker, Phys. Rev. B 62, R10 653 (2000)
Nygard, J., Cobden, D.H., Bockrath, M., McEuen, P.L., Lindelof, P.E., Appl. Phys. A 69, 297 (1999)
Haruyama, J., Takesue, I., Sato, Y., Appl. Phys. Lett. 77, 2891 (2000) CrossRef
Bachtold, A., de Jonge, M., Grove-Rasmussen, K., McEuen, P.L., Buitelaar, M., Schoenenberger, C., Phys. Rev. Lett. 87, 166801 (2001) CrossRef
Tarkiainen, R., Ahlskog, M., Penttila, J., Roschier, L., Hakonen, P., Paalanen, M., Sonin, E., Phys. Rev. B 64, 195412 (2001) CrossRef
Kanda, A., Tsukagoshi, K., Aoyagi, Y., Ootuka, Y., Phys. Rev. Lett. 92, 036801 (2004) CrossRef
Gershenson, M.E., Khavin, Y.B., Mikhalchuk, A.G., Bozler, H.M., Bogdanov, A.L., Phys. Rev. Lett. 79, 725 (1997) CrossRef
Nazarov, Y.V., Phys. Rev. Lett. 82, 1245 (1999) CrossRef
Bagrets, D.A., Nazarov, Y.V., Phys. Rev. Lett. 94, 056801 (2005) CrossRef
Golubev, D.S., Zaikin, A.D., Phys. Rev. B 74, 245329 (2006) CrossRef
Golubev, D.S., Zaikin, A.D., Phys. Rev. B 70, 165423 (2004) CrossRef
Panyukov, S.V., Zaikin, A.D., Phys. Rev. Lett. 67, 3168 (1991) CrossRef
Nazarov, Y.V., Phys. Rev. Lett. 82, 1245 (1999) CrossRef
Bagrets, D.A., Nazarov, Y.V., Phys. Rev. Lett. 94, 056801 (2005) CrossRef
G.L. Ingold, Y.V. Nazarov, in Single Charge Tunneling, edited by H. Grabert, M.H. Devoret, NATO ASI Ser. B, Vol. 294 (Plenum Press, New York, 1992), p. 21