Skip to main content Accessibility help
×
Home
Hostname: page-component-55597f9d44-dfw9g Total loading time: 0.501 Render date: 2022-08-17T07:54:09.653Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Using polygenic scores and clinical data for bipolar disorder patient stratification and lithium response prediction: machine learning approach – CORRIGENDUM

Published online by Cambridge University Press:  04 May 2022

Rights & Permissions[Opens in a new window]

Abstract

Type
Corrigendum
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of the Royal College of Psychiatrists

An incorrect author affiliation was published in the above article. This has now been corrected in both the online PDF and HTML versions of this article. The authors apologise for this error.

References

Cearns, M, Amare, AT, Schubert, KO, Thalamuthu, A, Frank, J, Streit, F, Adli, M et al. Using polygenic scores and clinical data for bipolar disorder patient stratification and lithium response prediction: machine learning approach. The British Journal of Psychiatry 2022; 110. https://doi.org/10.1192/bjp.2022.28Google ScholarPubMed

This correction applies to the following article(s):

Using polygenic scores and clinical data for bipolar disorder patient stratification and lithium response prediction: machine learning approach

Micah Cearns[Opens in a new window]Micah Cearns, Azmeraw T. Amare[Opens in a new window]Azmeraw T. Amare, Klaus Oliver Schubert, Anbupalam Thalamuthu, Joseph Frank, Fabian Streit, Mazda Adli, Nirmala Akula, Kazufumi Akiyama, Raffaella Ardau, Bárbara Arias, Jean-Michel Aubry, Lena Backlund, Abesh Kumar Bhattacharjee, Frank Bellivier, Antonio Benabarre, Susanne Bengesser, Joanna M. Biernacka, Armin Birner, Clara Brichant-Petitjean, Pablo Cervantes, Hsi-Chung Chen[Opens in a new window]Hsi-Chung Chen, Caterina Chillotti, Sven Cichon, Cristiana Cruceanu, Piotr M. Czerski, Nina Dalkner, Alexandre Dayer, Franziska Degenhardt, Maria Del Zompo, J. Raymond DePaulo, Bruno Étain[Opens in a new window]Bruno Étain, Peter Falkai, Andreas J. Forstner, Louise Frisen, Mark A. Frye, Janice M. Fullerton, Sébastien Gard, Julie S. Garnham, Fernando S. Goes, Maria Grigoroiu-Serbanescu, Paul Grof, Ryota Hashimoto, Joanna Hauser, Urs Heilbronner, Stefan Herms, Per Hoffmann, Andrea Hofmann, Liping Hou, Yi-Hsiang Hsu, Stephane Jamain, Esther Jiménez, Jean-Pierre Kahn, Layla Kassem, Po-Hsiu Kuo, Tadafumi Kato, John Kelsoe, Sarah Kittel-Schneider, Sebastian Kliwicki, Barbara König, Ichiro Kusumi, Gonzalo Laje, Mikael Landén, Catharina Lavebratt[Opens in a new window]Catharina Lavebratt, Marion Leboyer, Susan G. Leckband, Mario Maj, Mirko Manchia, Lina Martinsson, Michael J. McCarthy[Opens in a new window]Michael J. McCarthy, Susan McElroy, Francesc Colom, Marina Mitjans, Francis M. Mondimore, Palmiero Monteleone[Opens in a new window]Palmiero Monteleone, Caroline M. Nievergelt, Markus M. Nöthen, Tomas Novák, Claire O'Donovan, Norio Ozaki, Vincent Millischer, Sergi Papiol, Andrea Pfennig, Claudia Pisanu, James B. Potash, Andreas Reif, Eva Reininghaus, Guy A. Rouleau, Janusz K. Rybakowski, Martin Schalling, Peter R. Schofield, Barbara W. Schweizer, Giovanni Severino, Tatyana Shekhtman, Paul D. Shilling, Katzutaka Shimoda, Christian Simhandl, Claire M. Slaney, Alessio Squassina, Thomas Stamm, Pavla Stopkova, Fasil Tekola-Ayele, Alfonso Tortorella, Gustavo Turecki, Julia Veeh, Eduard Vieta, Stephanie H. Witt, Gloria Roberts[Opens in a new window]Gloria Roberts, Peter P. Zandi, Martin Alda[Opens in a new window]Martin Alda, Michael Bauer, Francis J. McMahon, Philip B. Mitchell, Thomas G. Schulze, Marcella Rietschel, Scott R. Clark, Bernhard T. Baune and the Major Depressive Disorder Working Group of the Psychiatric Genomics Consortium 
Submit a response

eLetters

No eLetters have been published for this article.
You have Access Open access

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Using polygenic scores and clinical data for bipolar disorder patient stratification and lithium response prediction: machine learning approach – CORRIGENDUM
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Using polygenic scores and clinical data for bipolar disorder patient stratification and lithium response prediction: machine learning approach – CORRIGENDUM
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Using polygenic scores and clinical data for bipolar disorder patient stratification and lithium response prediction: machine learning approach – CORRIGENDUM
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *