Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-07-03T13:52:54.008Z Has data issue: false hasContentIssue false

XMM Observations of Abundances in the Intracluster Medium

Published online by Cambridge University Press:  26 May 2016

Kyoko Matsushita
Affiliation:
Tokyo University of Science, Japan
Yasushi Ikebe
Affiliation:
University of Maryland, USA
Alexis Finoguenov
Affiliation:
Max-Planck-Institut fuer Extraterrestrische Physik, Germany
Hans Böhringer
Affiliation:
Max-Planck-Institut fuer Extraterrestrische Physik, Germany

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Based on XMM-Newton observations of M 87 and the Centaurus cluster, abundance profiles of various elements of the intracluster medium (ICM) are derived. The abundances of Si and Fe show strong decreasing gradients. In contrast, the O and Mg abundances are about half of the Si abundance at the center.

From the gas mass to stellar mass ratio and the comparison of Mg abundance with the stellar metallicity, the stellar mass loss from the central galaxies is indicated to be the main source of gas in the very central region of the clusters.

The observed O, Si and Fe abundance pattern determines the contribution of supernova (SN) Ia and SN II, with the abundance pattern of ejecta of SN Ia. Most of the Si and Fe of the ICM in the central region of the clusters comes from SN Ia which occured in the central galaxies. In order to explain the observed O/Si ratio of a half solar, SN Ia products should have similar abundances of Si and Fe, which may reflect dimmer SN Ia observed in old stellar systems.

Type
Part 1. Census
Copyright
Copyright © Astronomical Society of the Pacific 2004 

References

Allen, S. W., & Fabian, A.C., 1994, MNRAS, 269, 409.CrossRefGoogle Scholar
Arnaud, M., Rothenflug, R., Boulade, O., et al. 1992, A&A, 254, 49.Google Scholar
Belsole, E., Sauvageot, J.L., Böhringer, H., et al. 2001, A&A, 365, L188.Google Scholar
Böhringer, H., Belsole, E., Kennea, J., et al. 2001, A&A, 365, L181.Google Scholar
Böhringer, H., Matsushita, K., Churazov, E., Ikebe, Y., & Chen, Y., 2002, A&A, 382, 804.Google Scholar
Clementini, G., Gratton, R.G., Carretta, E. et al., 1999, MNRAS, 302, 22.Google Scholar
Edvardsson, E., Andersen, J., Gustafsson, B., et al. A&A, 1993, 275, 101.Google Scholar
Feldman, U., 1992, Physica Scripta 46, 202.Google Scholar
Finoguenov, A., Matsushita, K., Böhringer, H., et al. 2002, A&A, 381, 21.Google Scholar
Hamuy, M., Philips, M.M., Suntzeff, N.B., et al. 1996, AJ 112, 2438.Google Scholar
Iwamoto, K., Brachwitz, F., Nomoto, K., et al. 1999, ApJS, 125, 439.Google Scholar
Iwanov, V., Hamuy, M., & Pinto, P.A., 2000, ApJ, 542, 588.Google Scholar
Kobayashi, C., & Arimoto, N., 1999, ApJ, 527, 573.Google Scholar
Nissen, P.E., Gustafsson, B., Edvardsson, B., et al. 1994, A&A, 285, 440.Google Scholar
Nomoto, K., Thielemann, F-K., & Wheeler, J.C., 1984, ApJ, 279, 23.CrossRefGoogle Scholar
Makishima, K., Ezawa, H., Fukazawa, Y., et al. 2001, PASJ, 53, 401.Google Scholar
Matsushita, K., Belsole, E., Finoguenov, A., & Böhringer, H., 2002, A&A, 386, 77.Google Scholar
Matsushita, K., Finoguenov, A., Böhringer, H., 2003a, A&A, 401, 443.Google Scholar
Matsushita, K., Böhringer, H., Takahashi, I., & Ikebe, Y., 2003b, submitted to A&A.Google Scholar
Renzini, A., Ciotti, L., D'Ercole, A., & Pellegrini, S. 1993, ApJ, 419, 52.Google Scholar
Smith, R.K., Brickhouse, N.S., Liedahl, D.A., & Raymond, J.S., 2001, ApJ, 556, 91.Google Scholar
Tamura, T., et al. 2001, A&A, 365, L87.Google Scholar
Umeda, H., Nomoto, K., & Kobayashi, C. 1999, ApJ, 522, L43.Google Scholar