Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-18T08:33:46.621Z Has data issue: false hasContentIssue false

The visible matter – dark matter coupling

Published online by Cambridge University Press:  26 May 2016

Renzo Sancisi*
Affiliation:
Osservatorio Astronomico, Via Ranzani 1, 1-40127 Bologna, Italy; and Kapteyn Astronomical Institute, PO Box 800, NL-9700 AV Groningen, the Netherlands

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In the inner parts of spiral galaxies, of high or low surface brightness, there is a close correlation between rotation curve shape and light distribution. For any feature in the luminosity profile there is a corresponding feature in the rotation curve and vice versa. This implies that the gravitational potential is strongly correlated with the distribution of luminosity: either the luminous mass dominates or there is a close coupling between luminous and dark matter. in a similar way, the declining rotation curves observed in the outer parts of high luminosity systems are a clear signature of the stellar disk which either dominates or traces the distribution of mass.

The notion that the baryons are dynamically important in the centres of galaxies, including LSBs, undermines the whole controversy over the cusps in CDM halos and the comparison with the observations. If the baryons dominate in the central regions of all spirals, including LSBs, how can the CDM profiles be compared with the observations? Alternatively, if the baryons do not dominate but simply trace the DM distribution, why, in systems of comparable luminosity, are some DM halos cuspy (like the light) and others (also like the light) are not?

Type
Part 7: Baryonic Dark Matter
Copyright
Copyright © Astronomical Society of the Pacific 2004 

References

Barnaby, B., & Thronson, H. A. 1994, AJ, 107, 1717.CrossRefGoogle Scholar
Battaglia, G., Fraternali, F., Oosterloo, T., & Sancisi, R. 2003, in preparation.Google Scholar
Blais-Ouellette, S., Carignan, C., Amram, P., & Coté, S. 1999, AJ, 118, 2123.Google Scholar
Bottema, R. 1993, A&A, 275, 16.Google Scholar
Bottema, R., & Verheijen, M. A. W. 2002, A&A, 388, 793.Google Scholar
Broeils, A. H. 1992, PhD thesis, University of Groningen.Google Scholar
Burstein, D., & Rubin, V. C. 1985, ApJ, 297, 423.CrossRefGoogle Scholar
Casertano, S., & van Gorkom, J. M. 1991, AJ, 101, 1231.CrossRefGoogle Scholar
Kalnajs, A. J. 1983, in Internal Kinematics of Galaxies, IAU Symposium No. 100, ed. Athanassoula, E. (Dordrecht: Reidel), p. 87.Google Scholar
Kent, S. M. 1986, AJ, 91, 1301.CrossRefGoogle Scholar
Kent, S. M. 1987, AJ, 93, 816.CrossRefGoogle Scholar
Kregel, M. 2003, PhD thesis, University of Groningen.Google Scholar
Navarro, J. F., Frenk, C. S., & White, S. D. M. 1997, ApJ, 490, 493.CrossRefGoogle Scholar
Palunas, P., & Williams, T. B. 2000, AJ, 120, 2884.CrossRefGoogle Scholar
Persic, M., & Salucci, P. 1991, ApJ, 368, 60.CrossRefGoogle Scholar
Persic, M., Salucci, P., & Stel, F. 1996, MNRAS, 281, 27.CrossRefGoogle Scholar
Sancisi, R., & van Albada, T. S. 1987, in Dark Matter in the Universe, IAU Symposium No. 117, eds. Knapp, G. & Kormendy, J. (Doordrecht: Reidel), p.67.CrossRefGoogle Scholar
Swaters, R. A. 1999, PhD thesis, University of Groningen.Google Scholar
Swaters, R. A., & Sancisi, R. 2003, in preparation.Google Scholar
van Albada, T. S., & Sancisi, R. 1986, Phil. Trans. R. Soc. London, Ser. A, 320, 447.Google Scholar
van der Kruit, P.C., & Searle, L. 1981, A&A, 95, 105.Google Scholar
Verheijen, M. A. W. 1997, PhD thesis, University of Groningen.Google Scholar
Zwaan, M. A., van der Hulst, J. M., & Bosma, A. 2003, private communication.Google Scholar