Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-26T17:18:32.456Z Has data issue: false hasContentIssue false

Type Ia Supernovae and the Value of the Hubble Constant

Published online by Cambridge University Press:  26 May 2016

Brad K. Gibson
Affiliation:
Centre for Astrophysics & Supercomputing, Swinburne University, Mail #31, P.O. Box 218, Hawthorn, Vic 3122, Australia
Chris B. Brook
Affiliation:
Centre for Astrophysics & Supercomputing, Swinburne University, Mail #31, P.O. Box 218, Hawthorn, Vic 3122, Australia

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The methodology involved in deriving the Hubble Constant via the calibration of the corrected peak luminosities of Type Ia supernovae (SNe) is reviewed. We first present a re-analysis of the Calán-Tololo (C-T) and Center for Astrophysics (CfA) Type Ia SN surveys. Bivariate linear least squares and quadratic boot-strapped fits in peak apparent magnitude and light curve shape are employed to correct this heterogeneous sample of peak apparent magnitudes, resulting in an homogeneous (and excellent) secondary distance indicator: the so-called corrected peak luminosity. We next provide an empirical calibration for this corrected luminosity, using Cepheid-based distances for seven nearby spiral galaxies host to Type Ia SNe. Included in this sample is the spectroscopically peculiar SN 1991T (in NGC 4527), whose corrected peak luminosity is shown to be indistinguishable from that of so-called “normal” SNe. A robust value of the Hubble Constant is derived and shown to be H0=73±2(r)±7(s)km s-1 Mpc-1.

Type
Part VI: Determination of H0
Copyright
Copyright © Astronomical Society of the Pacific 2005 

References

Burstein, D. & Heiles, C. 1982, AJ, 87, 1165.Google Scholar
Dolphin, A. E. 2000, PASP, 112, 1397.Google Scholar
Freedman, W. L., Madore, B. F., Gibson, B. K., et al. 2001, submitted.Google Scholar
Gibson, B. K., Stetson, P. B., Freedman, W. L., et al. 2000, ApJ, 529, 723.Google Scholar
Gibson, B. K. & Stetson, P. B. 2001, submitted.Google Scholar
Hamuy, M., Phillips, M. M., Schommer, R. A., et al. 1996, AJ, 112, 2391.Google Scholar
Hill, R. J., et al. 1998, ApJ, 496, 648.Google Scholar
Höflich, P. & Khokhlov, A. 1996, ApJ, 457, 500.Google Scholar
Jha, S., Garnavich, P. M., Kirshner, R. P., et al. 1999, ApJS, 125, 73.Google Scholar
Lira, P., Hamuy, M., Wells, L. A., et al. 1998, AJ, 115, 234.Google Scholar
Madore, B. F. & Freedman, W. L. 1991, PASP, 103, 933.Google Scholar
Phillips, M. M., Lira, P., Suntzeff, N. B., et al. 1999, AJ, 118, 1766.Google Scholar
Riess, A. G., Press, W. H. & Kirshner, R. P. 1996, ApJ, 473, 88.Google Scholar
Riess, A. G., Filippenko, A. V., Challis, P., et al. 1998, AJ, 116, 1009.Google Scholar
Saha, A., Sandage, A., Tammann, G.A., et al. 1999, ApJ, 522, 802.Google Scholar
Stetson, P. B. 1994, AJ, 106, 205.Google Scholar
Stetson, P. B. 1996, PASP, 108, 851.CrossRefGoogle Scholar
Stetson, P. B. 1998, PASP, 110, 1448.Google Scholar
Suntzeff, N. B., Phillips, M. M., Covarrubias, R., et al. 1999, AJ, 117, 1175.Google Scholar
Tanvir, N. R., Ferguson, H. C. & Shanks, T. 1999, MNRAS, 310, 175.Google Scholar
Turner, A., Ferrarese, L., Saha, A., et al. 1998, ApJ, 505, 207.Google Scholar
Udalski, A., Szymański, M., Kubiak, M., et al. 1999, AcA, 49, 201.Google Scholar
Whitmore, B., Heyer, I. & Casertano, S. 1999, PASP, 111, 1559.Google Scholar