Skip to main content Accessibility help
×
Home

Toward an Empirical Theory of Pulsar Emission

  • Joanna M. Rankin (a1)

Abstract

Polarized, pulsar profiles consist of two distinct types of emission units, core and conal components. Various configurations of these two basic units then underlie the 5 principal species of profile: conal and core single, conal double, triple, and multiple (5 comp.) profiles. Conal single profiles typically evolve through bifurcation into conal double forms at low frequency; whereas core single profiles evolve into triple forms at high frequency by adding pairs of conal “outriders”. Conal components and outrider pairs exhibit polarization properties compatible with a hollow-conical emission zone which spreads weakly at low frequency. The central core components in each profile species, by contrast, often exhibit circular polarization of symmetrically alternating sense. The triple profile is then most generally prototypical of pulsar emission, and the physical distinction between its outriding conal components and its central core emission feature are primary–implying two distinct corresponding radiation mechanism. (Ap. J. 274, 333/359).

The isolated core components of stars with core single profiles exhibit little ordered modulation, nor do they null or evince of any sort of mode changing; many have featureless fluctuation spectra, while others exhibit low-frequency (P3 = 15–50 periods/cycle) features with which no orderly “drift” is apparently associated. The core components in triple, double (“saddle” region), and multiple profiles also exhibit these stationary, low-frequency fluctuations. “Drifting” subpulses are then an exclusively conal phenomenon. Systematic subpulse modulation (P3 = 2–15 periods/cycle) is associated with the conal components of stars with double, triple, and multiple profiles, but progressive, orderly drifting is observed only in conal single stars. The ensemble P3 values associated with the conal components of the various profile species seem indistinguishable, again suggesting that these species are geometry-specific manifestations of a single physical configuration. Mode changing and pulse nulling are exclusively associated with neither core nor conal emission, but rather connect the two. Mode changing is typically manifest as a reorganization of the conal constituents of emission about the profile's core component. Finally, pulse nulling is not so closely associated with spindown age as has been thought. Pulsars which null are members of older profile species to be sure, but within a given species, those stars which null are no older than those that do not. (1986 Ap. J. 301, 901)

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Toward an Empirical Theory of Pulsar Emission
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Toward an Empirical Theory of Pulsar Emission
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Toward an Empirical Theory of Pulsar Emission
      Available formats
      ×

Copyright

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed