Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-25T10:20:21.906Z Has data issue: false hasContentIssue false

Theory of Formation of Massive Stars via Accretion

Published online by Cambridge University Press:  23 September 2016

Harold W. Yorke*
Affiliation:
Jet Propulsion Laboratory, California Institute of Technology, MS 169-506, 4800 Oak Grove Drive, Pasadena, CA 91109

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The collapse of massive molecular clumps can produce high mass stars, but the evolution is not simply a scaled-up version of low mass star formation. Outflows and radiative effects strongly hinder the formation of massive stars via accretion. A necessary condition for accretion growth of a hydrostatic object up to high masses M ≳ 20M (rather than coalescence of optically thick objects) is the formation of, and accretion through, a circumstellar disk. Once the central object has accreted approximately 10 M it has already evolved to core hydrogen-burning; the resultant main sequence star continues to accrete material as it begins to photoevaporate its circumstellar disk (and any nearby disks) on a timescale of ∼105 yr, similar to the accretion timescale. Until the disk(s) is (are) completely photoevaporated, this configuration is observable as an ultra-compact Hii region (UCHii). The final mass of the central star (and any nearby neighboring systems) is determined by the interplay between radiation acceleration, UV photoevaporation, stellar winds and outflows, and the accretion through the disk.

Several aspects of this evolutionary sequence have been simulated numerically, resulting in a “proof of concept”. This scenario places strong constraints on the accretion rate necessary to produce high mass stars and offers an opportunity to test the accretion hypothesis.

Type
Part 4: Massive Star Formation
Copyright
Copyright © Astronomical Society of the Pacific 2004 

References

Behrend, R., Maeder, A. 2001, A&A, 373, 190 Google Scholar
Bonnell, I.A., Bate, M.R., Zinnecker, H. 1998 MNRAS, 298, 93 Google Scholar
Bonnell, I.A., 2002, PASP, 267, ed. Crowther, P.A., 193 Google Scholar
Cabrit, S., Bertout, C. 1992, A&A, 261, 274 Google Scholar
D'Antona, F., & Mazzitelli, I. 1994, ApJS, 90, 467 Google Scholar
Eiroa, C., Casali, M. M., Miranda, L. F., Ortiz, E. 1994, A&A, 290, 599 Google Scholar
Hollenbach, D., Yorke, H.W., Johnstone, D. 2000, in Protostars and Planets IV, eds. Mannings, , Boss, , Russell, , (Tucson: Univ. Ariz. Press), p. 401 Iben, I. Jr. 1965, ApJ, 141, 993 Google Scholar
Kahn, F.D. 1974, A&A, 37, 149 Google Scholar
Maeder, A, 2002, In: Highlights of Astronomy, Vol. 12, ed. Rickman, H., p. 170 Mathis, J.S., Rumpl, W., Nordsieck, K.H. 1977, ApJ, 217, 425 Google Scholar
Martin-Pintado, J., Neri, R., Thum, C., Planesas, P., Bachiller, R. 1994, A&A, 286, 890 Google Scholar
McKee, C.F., Tan, J.C., 2003, ApJ, 585, 850 Google Scholar
Meynet, G., Maeder, A. 2000, A&A, 361, 101 Google Scholar
Nakano, T., Hasegawa, T., Norman, C. 1995, ApJ 450, 183 Google Scholar
Preibisch, T., Ossenkopf, V., Yorke, H.W., Henning, T., 1993, A&A, 279, 577 Google Scholar
Richer, J. S., Shepherd, D. S., Cabrit, S., Bachiller, R., Churchwell, E. 2000, in Protostars & Planets IV, ob. cit., p. 867 Google Scholar
Richling, S., Yorke, H.W. 1997, A&A, 327, 317 Google Scholar
Shepherd, D.S., Churchwell, E. 1996, ApJ, 472, 225 Google Scholar
Shepherd, D.S., Claussen, M.J., Kurtz, S.E., 2002, PASP, 267, ed. Crowther, P.A., 415 Google Scholar
Suttner, G., Yorke, H.W. 2001, ApJ, 551, 461 Google Scholar
Wolfire, M.G., Cassinelli, J.P. 1987, ApJ, 319, 850 Google Scholar
Yorke, H.W., 1986, ARAA, 24, 48 Google Scholar
Yorke, H.W., 2002, PASP, 267, ed. Crowther, P.A., 165 Google Scholar
Yorke, H.W., Bodenheimer, P. 1999, ApJ, 525, 330 Google Scholar
Yorke, H.W., Krügel, E. 1977, A&A, 54, 183 Google Scholar
Yorke, H.W., Sonnhalter, C., 2002, ApJ, 569, 846 CrossRefGoogle Scholar