Hostname: page-component-7c8c6479df-24hb2 Total loading time: 0 Render date: 2024-03-29T02:38:31.088Z Has data issue: false hasContentIssue false

Test of the Optimization Techniques for the Photometric Analysis of Contact Binaries

Published online by Cambridge University Press:  07 August 2017

E. Lapasset
Affiliation:
Observatorio Astronómico Univ. Nacional de Córdoba Laprida 854, 5000 Córdoba Argentina
M. Gomez
Affiliation:
Observatorio Astronómico Univ. Nacional de Córdoba Laprida 854, 5000 Córdoba Argentina
R. Fariñas
Affiliation:
Observatorio Astronómico Univ. Nacional de Córdoba Laprida 854, 5000 Córdoba Argentina

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present light curve analyses of contact binaries and comparisons with previously published cross-correlations radial velocity data. The critical parameter q (mass-ratio) obtained from a grid technique is confronted with the spectroscopic value. For total eclipsing systems, both values are always in a good or reasonable agreement, including some stars with shallow light curves. For partial eclipsing systems, convergent photometric and spectroscopic results are obtained for an important set of stars. Two exceptions are V523 Cas and XY Boo for which some arguments are suggested. We concluded that reliable parameter determinations can be obtained from pure photometric solutions, by means of grid techniques.

Type
Oral and Contributed Papers
Copyright
Copyright © Kluwer 1992 

References

Batten, A.H., and Lu, W. 1986. Publ. Astron. Soc. Pacific 98, 92.Google Scholar
Hilditch, R.W. 1981. Mon. Not. Roy. Astron. Soc. 196, 305.CrossRefGoogle Scholar
Hrivnak, B.J. 1988. Astrophys. J. 335, 319.CrossRefGoogle Scholar
Hrivnak, B.J. 1989. Astrophys. J. 340, 458.CrossRefGoogle Scholar
King, D.J., and Hilditch, R.W. 1984. Mon. Not. Roy. Astron. Soc. 209, 645.Google Scholar
Lapasset, E., and Sisteró, R.F. 1984. Astron. Astrophys. 130, 97.Google Scholar
Lu, W. 1985. Publ. Astron. Soc. Pacific 97, 1086.Google Scholar
Maceroni, C. 1986. Astron. Astrophys. 170, 43.Google Scholar
McLean, B.J. 1981. Mon. Not. Roy. Astron. Soc. 195, 931.Google Scholar
McLean, B.J. 1983. Mon. Not. Roy. Astron. Soc. 204, 817.CrossRefGoogle Scholar
McLean, B.J., and Hilditch, R.W. 1984. Mon. Not. Roy. Astron. Soc. 209, 645.CrossRefGoogle Scholar
Milone, E.F., Hrivnak, B.J., and Fischer, W.A. 1985. Astron. J. 90, 354.CrossRefGoogle Scholar
Nesci, R., Maceroni, C., Milone, L., and Russo, G. 1986. Astron. Astrophys. 159, 142.Google Scholar
Rucinski, S.M. 1976. Publ. Astron. Soc. Pacific 88, 777.CrossRefGoogle Scholar
Rucinski, S.M., and Kaluzny, J. 1982. Astrophys. Space Sci. 88, 433.CrossRefGoogle Scholar
Van Hamme, W., and Wilson, R.F. 1985. Astron. Astrophys. 152, 25.Google Scholar
Wilson, R.E., and Devinney, E.J. 1971. Astron. Astrophys. 166, 605.Google Scholar
Wilson, R.E., and Devinney, E.J. 1973. Astron. Astrophys. 182, 539.Google Scholar
Zhai, D., Leung, K-C., and Zhang, R. 1984. Astron. Astrophys. Suppl. Ser. 57, 487.Google Scholar