Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-26T00:49:24.425Z Has data issue: false hasContentIssue false

Stellar Evolution and Stellar Populations in Galaxies

Published online by Cambridge University Press:  07 August 2017

André Maeder*
Affiliation:
Geneva Observatory CH-1290 Sauverny, Switzerland

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Models of population synthesis are resting on an ensemble of other models, data and assumptions, in particular the models of stellar evolution, the data on initial compositions, the data on stellar spectra, the initial mass function (IMF), the star formation rate (SFR), the infall rate, etc… Here we shall concentrate on the properties of stellar models and their consequences for the global properties of stellar populations in galaxies.

The basic link between star properties and population synthesis is expressed in the so-called fuel consumption theorem (cf. Renzini and Buzzoni, 1986). It says that the contribution of stars in any post main sequence stage to the total luminosity of a star population is proportional to the amount of fuel burnt in the considered evolutionary stage. The demonstration of this theorem is rather straightforward. And although it is not used in recent population synthesis (cf. Guideroni and Rocca–Volmerange, 1987; Charlot and Bruzual, 1990), its didactical value is great. It shows how the integrated properties of star populations in galaxies directly depend on stellar internal properties. Indeed, the amount of fuel burnt in a given stage depends, in turn, on many physical assumptions in the models, such as the nuclear reaction rates, the opacities, convection and overshooting, mass loss, mixing processes, etc… Thanks to the above theorem, the effect of different model assumptions on population synthesis can be predicted, at least qualitatively.

Type
I. The Stellar Populations in the Milky Way
Copyright
Copyright © Kluwer 

References

Arnault, P., Kunth, D., Schild, H., 1989, A&A 224, 73.Google Scholar
Audouze, J., 1987, in Observational Cosmology , IAU Symposium 124, Eds. Hewitt, A. et al., Reidel Publ. Co., p. 89.Google Scholar
Azzopardi, M., Breysacher, J., 1985, A&A 149, 213.Google Scholar
Becker, S.A., Iben, I., 1980, ApJ. 237, 111.Google Scholar
Bertelli, G., Bressan, A., Chiosi, C., 1985, A&A 150, 33.Google Scholar
Breysacher, J., 1981, A&AS 43, 203.Google Scholar
Charlot, S., Bruzual, G.A., 1990, STSCI preprint no 452.Google Scholar
Conti, P.S., 1991, ApJ 377, 115.Google Scholar
Conti, P.S., Greenstein, J.L., Spinrad, H., Wallerstein, G., Vardya, M.S., 1967, ApJ 148, 105.CrossRefGoogle Scholar
Conti, P.S., Vacca, , 1991, Astron. J. in prep.Google Scholar
Green, E.M., Demarque, P., King, C.R., 1987, The revised Yale Isochrones and Luminosity Functions , Yale University Obs., New Haven.Google Scholar
Guideroni, B., Rocca–Volmerange, B., 1987, A&A 186, 1.Google Scholar
van der Hucht, K.A., Hidayat, B., Admiranto, A.G., Supelli, K.R., Doom, C., 1988, A&A 199, 217.Google Scholar
Iglesias, C.A., Rogers, F.J., 1991a, ApJ 371, 408.CrossRefGoogle Scholar
Iglesias, C.A., Rogers, F.J., 1991b, ApJ 371, L73.Google Scholar
Josey, S., Tayler, R.J., 1991, MNRAS in press.Google Scholar
Kudritzki, R.P., Pauldrach, A., Puls, J., 1987, A&A 173, 293.Google Scholar
Kudritzki, R.P., Pauldrach, A., Puls, J., Voels, S.R., 1991, in The Magellanic Clouds , IAU Symp. 148, Eds. Haynes, R., Milne, D., Kluwer Acad. Publ. p. 279.Google Scholar
Kunth, D., 1983, in Primordial Helium , ESO Workshop, Eds. Shaver, P.A. et al., ESO Garching, p. 305.Google Scholar
Kunth, D., Sargent, W.L.W., 1983, ApJ 273, 81.Google Scholar
Langer, N., 1989, A&A 220, 135.Google Scholar
Larson, R.B., 1986, MNRAS 218, 409.Google Scholar
Leitherer, C., 1991, private communication.Google Scholar
Lequeux, J., Peimbert, M., Rayo, J.F., Serrano, A., Torres–Peimbert, , 1979, A&A 80, 155.Google Scholar
Maeder, A., 1984, in Stellar Nucleosynthesis , Eds. Chiosi, C., Renzini, A., Reidel Publ. Co., p. 115.Google Scholar
Maeder, A., 1990, A&AS 84, 139.Google Scholar
Maeder, A., 1991, A&A 242, 91.Google Scholar
Maeder, A., 1992, A&A, in press.Google Scholar
Maeder, A., Lequeux, J., Azzopardi, M., 1980, A&A 90, L17.Google Scholar
Maeder, A., Mermilliod, J.C., 1981, A&A 93, 136.Google Scholar
Maeder, A., Meynet, G., 1989, A&A 210, 155.Google Scholar
Matteucci, F., 1986, ApJ 305, L81.CrossRefGoogle Scholar
Matteucci, F., 1991, in Chemistry in Space , Erice School, Ed. Greenberg, M., Kluwer Acad. Publ., p. 1.Google Scholar
Meylan, G., Maeder, A., 1983, A&A 124, 84.Google Scholar
Meynet, G., 1990, .Google Scholar
Nomoto, K., 1984, in Stellar Nucleosynthesis , Eds. Chiosi, C., Renzini, A., Reidel Publ. Co., p. 205.Google Scholar
Olive, K.A., Schramm, D.N., Steigman, G., Walker, T.P., 1990, Phys. Lett. B 236, 454.CrossRefGoogle Scholar
Olive, K.A., Thielemann, F.-K., Truran, J.W., 1987, ApJ 313, 813.CrossRefGoogle Scholar
Pagel, B.E.J., 1989, Rev. Mex. Astron. Astrofis. 18, 153, 161.Google Scholar
Pagel, B.E.J., 1991, in Dynamical and Chemical Evolution of Galaxies , Elba Conference, Eds. Franco, J.J., Matteucci, F., Kluwer Acad. Press, in press.Google Scholar
Pagel, B.E.J., Terlevich, R.J., Melnick, J., 1986, PASP 98, 1005.Google Scholar
Peimbert, M., 1986, PASP 98, 1057.Google Scholar
Peimbert, M., Torres–Peimbert, S., 1974, ApJ. 193, 327.CrossRefGoogle Scholar
Renzini, A., Buzzoni, A., 1986, in Spectral Evolution of Galaxies , Eds. Chiosi, C., Renzini, A., Reidel Publ. Co., p. 195.CrossRefGoogle Scholar
Rogers, F.J., Iglesias, C.A., 1991, ApJ Suppl., in press.Google Scholar
Schild, R., Maeder, A., 1985, A&A 143, L7.Google Scholar
Smith, L.F., 1968, MNRAS 141, 317.Google Scholar
Smith, L.F., 1982, IAU Symp. 99, 597.Google Scholar
Smith, L.F., 1988, ApJ 327, 128.Google Scholar
Steigmann, G., Gallagher, J.S., Schramm, D.N., 1991, Comment in Astrophys. and Space Sci., in press.Google Scholar
Thielemann, F.-K., Nomoto, K., Shigeyama, T., Tsujimoto, T., Hashimoto, M., 1991, in Elements and the Cosmos , Proc. of the 31st Herstmonceux Conf., Ed. Terlevich, R.J., Cambridge Univ. Press, in press.Google Scholar
Truran, J.W., 1991, in Evolution of stars: the photospheric abundance connection , IAU Symp. 145, Ed. Michaud, G., Tutukov, A., Kluwer Acad. Publ., p. 13.Google Scholar
Twarog, B.A., Wheeler, J.C., 1982, ApJ 261, 636.Google Scholar
Twarog, B.A., Wheeler, J.C., 1987, ApJ 316, 153.CrossRefGoogle Scholar
VandenBerg, D.A., 1985, ApJ Suppl. 58, 711.Google Scholar
Weidemann, V., 1990, Ann. Rev. Astr. Ap. 28, 103.Google Scholar
Woosley, S.E., 1986, in Nucleosynthesis and Chemical Evolution , 16th Saas–Fee Course, Eds. Hauck, B. et al., Geneva Observatory, p. 1.Google Scholar
Woosley, S.E., Weaver, T.A., 1986, in Radiation Hydrodynamics in Stars and Compact Objects , IAU Colloquium no 89, Eds. Mihalas, D., Winkler, K.-H. A., Springer–Verlag, Lecture Notes in Physics 255, 91.Google Scholar
Wheeler, J.C., Sneden, C., Truran, J.W. jr., 1989, Ann. Rev. Astron. Astrophys. 27, 279.Google Scholar