Skip to main content Accessibility help
×
Home

SN Heating Efficiency of the ISM of Starburst Galaxies

  • C. Melioli (a1), E. M. de Gouveia Dal Pino (a1), A. D'Ercole (a2) and A. Raga (a3)

Abstract

The interstellar medium heated by supernova explosions (SN) may acquire an expansion velocity larger than the escape velocity and leave the galaxy through a supersonic wind. Galactic winds are effectively observed in many local starburst galaxies (Lehnert & Heckman 1996). The SN ejecta are transported out of the galaxies by such winds which must affect the chemical evolution of the galaxies. The effectiveness of the processes mentioned above depends on the heating efficiency (HE) of the SNs, i.e., the ratio between the kinetic plus internal energy density of the ambient gas and the SN energy density. In a starburst region, several SN explosions occur at a large rate inside a relatively small volume. If the successive generations of SN remnants (SNRs) interact with each other very fast, then a superbubble of high temperature and low density will rapidly develop, before a significant increase of the ambient gas density that could lead to substantial losses of energy by radiation. In this case, it is common to assume a value for HE of the order of unity, since most of the available energy of the SNs will be transferred to the ambient gas in the form of kinetic and internal energy, instead of being radiated away. However this assumption fails to reproduce both the chemical and dynamical characteristics of most starburst (SB) galaxies. In order to solve this paradigm, we have constructed a simple semi-analytical model, considering the essential ingredients of a SB environment, i.e., a three-phase medium composed by hot diffuse gas, SNRs and clouds, which is able to qualitatively trace the thermalisation history of the ISM in a SB region and determine the HE evolution (Melioli, de Gouveia Dal Pino, & D'Ercole, A&A, 2003, submitted). Our study has also been accompanied by fully 3-D radiative cooling, hydrodynamical simulations of SNR-SNR and SNR-clouds interactions (see Melioli, de Gouveia Dal Pino, & Raga 2003, in preparation).

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      SN Heating Efficiency of the ISM of Starburst Galaxies
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      SN Heating Efficiency of the ISM of Starburst Galaxies
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      SN Heating Efficiency of the ISM of Starburst Galaxies
      Available formats
      ×

Copyright

Related content

Powered by UNSILO

SN Heating Efficiency of the ISM of Starburst Galaxies

  • C. Melioli (a1), E. M. de Gouveia Dal Pino (a1), A. D'Ercole (a2) and A. Raga (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.