Hostname: page-component-77c89778f8-vpsfw Total loading time: 0 Render date: 2024-07-18T11:01:30.541Z Has data issue: false hasContentIssue false

Scaling Laws for Dark Matter Halos in Late-Type and Dwarf Spheroidal Galaxies

Published online by Cambridge University Press:  26 May 2016

John Kormendy
Affiliation:
Department of Astronomy, the University of Texas at Austin, 1 University Station C1400, Austin, TX 78712-0259, USA
K. C. Freeman
Affiliation:
Research School of Astronomy and Astrophysics, Mount Stromlo Observatory, the Australian National University, Cotter Road, Weston Creek, Canberra, ACT 2611, Australia

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Published mass models fitted to galaxy rotation curves are used to study the systematic properties of dark matter (DM) halos in late-type and dwarf spheroidal (dSph) galaxies. Halo parameters are derived by fitting non-singular isothermals to (V2V2vis)1/2, where V(r) is the observed rotation curve and Vvis is the rotation curve of the visible matter. the latter is calculated from the surface brightness assuming that the mass-to-light ratio M/L is constant with radius. “Maximum disk” values of M/L are adjusted to fit as much of the inner rotation curve as possible without making the halo have a hollow core. Rotation curve decomposition becomes impossible fainter than absolute magnitude Mb ≃ −14, where V becomes comparable to the velocity dispersion of the gas. To increase the luminosity range further, we include dSph galaxies, which are physically related to spiral and irregular galaxies. Combining the data, we find that DM halos satisfy well defined scaling laws analogous to the “fundamental plane” relations for elliptical galaxies. Halos in less luminous galaxies have smaller core radii rc, higher central densities ρ0, and smaller central velocity dispersions σ. Scaling laws provide new and detailed constraints on the nature of DM and on galaxy formation and evolution. Some simple implications include:

1 – A single, continuous physical sequence of increasing mass extends from dSph galaxies with Mb ≃ −7.6 to Sc I galaxies with Mb ≃ −22.4.

2 – the high DM densities in dSph galaxies are normal for such tiny galaxies. Since virialised density depends on collapse redshift zcoll, ρ0 ∝ (1 + zcoll)3, the smallest dwarfs formed at least Δzcoll ≃ 7 earlier than the biggest spirals.

3 – the high DM densities of dSphs implies that they are real galaxies formed from primordial density fluctuations. They are not tidal fragments. Tidal dwarfs cannot retain even the low DM densities of their giant-galaxy progenitors. in contrast, dSphs have higher DM densities than do giant-galaxy progenitors.

4 – the fact that, as luminosity decreases, dwarf galaxies become much more numerous and also more nearly dominated by DM raises the possibility that there exists a large population of objects that are completely dark. Such objects are a canonical prediction of cold DM theory. If they exist, “empty halos” are likely to be small and dense -that is, darker versions of Draco and UMi.

5 – the slopes of the DM parameter correlations provide a measure on galactic mass scales of the slope n of the power spectrum |δk|2kn of primordial density fluctuations. Our preliminary results, not yet corrected for baryonic compression of DM, give n ≃ –1.9 ± 0.2. This is consistent with cold DM theory.

Type
Part 12: Dark and Visible Matter Scaling Relations
Copyright
Copyright © Astronomical Society of the Pacific 2004 

References

Aaronson, M. 1983, ApJ, 266, L11.Google Scholar
Aaronson, M., & Olszewski, E. 1987, in IAU Symposium 117, Dark Matter in the Universe, ed. Kormendy, J. & Knapp, G. R. (Dordrecht: Reidel), 153.Google Scholar
Armandroff, T. E., Olszewski, E. W., & Pryor, C. 1995, AJ, 110, 2131.Google Scholar
Athanassoula, E., 2004, in IAU Symposium 220, Dark Matter in Galaxies, ed. Ryder, S., Pisano, D. J., Walker, M., & Freeman, K. C. (San Francisco: ASP), in press.Google Scholar
Athanassoula, E., Bosma, A., & Papaioannou, S. 1987, A&A, 179, 23 (ABP).Google Scholar
Barnes, J. E., & Hernquist, L. 1992, Nature, 360, 715.CrossRefGoogle Scholar
Binggeli, B., & Cameron, L. M. 1991, A&A, 252, 27.Google Scholar
Binggeli, B., Tammann, G. A., & Sandage, A. 1987, AJ, 94, 251.CrossRefGoogle Scholar
Blais-Ouellette, S., Carignan, C., Amram, P., & Côté, S. 1999, AJ, 118, 2123.CrossRefGoogle Scholar
Bosma, A. 1978, PhD Thesis, Rijksuniversiteit Groningen.Google Scholar
Bosma, A. 1999, in Galaxy Dynamics: A Rutgers Symposium, ed. Merritt, D., Sellwood, J. A., & Valluri, M. (San Francisco: ASP), 339.Google Scholar
Bosma, A., Kormendy, J., & Souviron, J. 2004, in preparation.Google Scholar
Bottema, R. 1993, A&A, 275, 16.Google Scholar
Bottema, R. 1997, A&A, 328, 517.Google Scholar
Broeils, A. H. 1992, PhD Thesis, Rijksuniversiteit Groningen.Google Scholar
Burstein, D., & Heiles, C. 1984, ApJS, 54, 33.CrossRefGoogle Scholar
Carignan, C., Beaulieu, S., Côté, S., Demers, S., & Mateo, M. 1998, AJ, 116, 1690.Google Scholar
Carignan, C., & Puche, D. 1990, AJ, 100, 394.Google Scholar
Carignan, C., & Purton, C. 1998, ApJ, 506, 125.Google Scholar
Carignan, C., Sancisi, R., & van Albada, T. S. 1988, AJ, 95, 37.Google Scholar
Cook, K. H., et al. 1999, PASP, 111, 306.Google Scholar
Corbelli, E. 2003, MNRAS, 342, 199.CrossRefGoogle Scholar
Côté, P., Mateo, M., Olszewski, E. W., & Cook, K. H. 1999, ApJ, 526, 147.Google Scholar
Côté, S., Carignan, C., & Freeman, K. C. 2000, AJ, 120, 3027.CrossRefGoogle Scholar
Courteau, S., & Rix, H.-W. 1999, ApJ, 513, 561.Google Scholar
Da Costa, G. S. 1994, in ESO/OHP Workshop on Dwarf Galaxies, ed. Meylan, G. & Prugniel, P. (Garching: ESO), 221.Google Scholar
Debattista, V. P., & Sellwood, J. A. 1998, ApJ, 493, L5.CrossRefGoogle Scholar
de Blok, W. J. G., & McGaugh, S. S. 1996, ApJ, 469, L89.Google Scholar
de Blok, W. J. G., & McGaugh, S. S. 1997, MNRAS, 290, 533.Google Scholar
de Blok, W. J. G., McGaugh, S. S., & Rubin, V. C. 2001, ApJ, 122, 2396.Google Scholar
Dekel, A., & Silk, J. 1986, ApJ, 303, 39.Google Scholar
de Vaucouleurs, G., et al. 1991, Third Reference Catalogue of Bright Galaxies (New York: Springer).Google Scholar
Djorgovski, S. 1992, in Cosmology and Large-Scale Structure in the Universe, ed. de Carvalho, R. R. (San Francisco: ASP), 19.Google Scholar
Djorgovski, S., & Davis, M. 1986, in Galaxy Distances and Deviations from Universal Expansion, ed. Madore, B. F. & Tully, R. B. (Dordrecht: Reidel), 135.Google Scholar
Djorgovski, S., & Davis, M. 1987, ApJ, 313, 59.CrossRefGoogle Scholar
Djorgovski, S., de Carvalho, R., & Han, M.-S. 1988, in The Extragalactic Distance Scale, ed. van den Bergh, S. & Pritchet, C. J. (San Francisco: ASP), 329.Google Scholar
Dressler, A., et al. 1987, ApJ, 313, 42.Google Scholar
Faber, S. M., et al. 1987, in Nearly Normal Galaxies: From the Planck Time to the Present, ed. Faber, S. M. (New York: Springer), 175.Google Scholar
Fall, S. M. 2002, in The Dynamics, Structure and History of Galaxies, ed. Da Costa, G. S. & Jerjen, H. (San Francisco: ASP), 289.Google Scholar
Ferguson, H. C., & Binggeli, B. 1994, A&AR, 6, 67.Google Scholar
Ferrarese, L., et al. 2000, ApJS, 128, 431.Google Scholar
Freeman, K. C. 1970, ApJ, 160, 811.Google Scholar
Freeman, K. C. 1987, in Nearly Normal Galaxies: From the Planck Time to the Present, ed. Faber, S. M. (New York: Springer), 317.Google Scholar
Gallart, C., Martínez-Delgado, D., Gómez-Flechoso, M. A., & Mateo, M. 2001, AJ, 121, 2572.Google Scholar
Gott, J. R., & Rees, M. J. 1975, A&A, 45, 365.Google Scholar
Irwin, M., & Hatzidimitriou, D. 1995, MNRAS, 277, 1354.CrossRefGoogle Scholar
Jobin, M., & Carignan, C. 1990, AJ, 100, 648.Google Scholar
King, I. R. 1966, AJ, 71, 64.Google Scholar
Klessen, R. S., Grebel, E. K., & Harbeck, D. 2003, ApJ, 589, 798.Google Scholar
Klypin, A., Kravtsov, A. V., Valenzuela, O., & Prada, F. 1999, ApJ, 522, 82.Google Scholar
Knapp, G. R., Kerr, F. J., & Bowers, P. F. 1978, AJ, 83, 360.CrossRefGoogle Scholar
Kormendy, J. 1982, in Morphology and Dynamics of Galaxies, ed. Martinet, L. & Mayor, M. (Sauverny: Geneva Observatory), 113.Google Scholar
Kormendy, J. 1984, ApJ, 287, 577.Google Scholar
Kormendy, J. 1985, ApJ, 295, 73.Google Scholar
Kormendy, J. 1987a, in IAU Symposium 117, Dark Matter in the Universe, ed. Kormendy, J. & Knapp, G. R. (Dordrecht: Reidel), 139.Google Scholar
Kormendy, J. 1987b, in IAU Symposium 127, Structure and Dynamics of Elliptical Galaxies, ed. de Zeeuw, T. (Dordrecht: Reidel), 17.Google Scholar
Kormendy, J. 1987c, in Nearly Normal Galaxies: From the Planck Time to the Present, ed. Faber, S. M. (New York: Springer), 163.Google Scholar
Kormendy, J. 1988, in Guo Shoujing Summer School of Astrophysics; Origin, Structure and Evolution of Galaxies, ed. Li Zhi, Fang (Singapore: World Scientific), 252.Google Scholar
Kormendy, J. 1990, in The Edwin Hubble Centennial Symposium: The Evolution of the Universe of Galaxies, ed. Kron, R. G. (San Francisco: ASP), 33.Google Scholar
Kormendy, J., & Bender, R. 1994, in ESO/OHP Workshop on Dwarf Galaxies, ed. Meylan, G. & Prugniel, P. (Garching: ESO), 161.Google Scholar
Kormendy, J., & Djorgovski, S. 1989, ARA&A, 27, 235.Google Scholar
Kormendy, J., et al. 1994, in ESO/OHP Workshop on Dwarf Galaxies, ed. Meylan, G. & Prugniel, P. (Garching: ESO), 147.Google Scholar
Kormendy, J., & Freeman, K. C. 1996, in Ringberg Proceedings 1996 of Sonderforschungsbereich 375, Research in Particle Astrophysics, ed. Bender, R. et al. (Munich: Technische Universitat Miinchen, Ludwig-Maximilians-Universitat, Max-Planck-Institut für Physik, & Max-Planck-Institut für Astrophysik), 13.Google Scholar
Kormendy, J., & Freeman, K. C. 2004, in preparation.Google Scholar
Kraan-Korteweg, R. C. 1986, A&AS, 66, 255.Google Scholar
Kranz, T., Slyz, A., & Rix, H.-W. 2003, ApJ, 586, 143.Google Scholar
Kuhn, J. R. 1993, ApJ, 409, L13.Google Scholar
Kuhn, J. R., & Miller, R. H. 1989, ApJ, 341, L41.CrossRefGoogle Scholar
Lake, G. 1990, MNRAS, 244, 701.Google Scholar
Lake, G., & Feinswog, L. 1989, AJ, 98, 166.Google Scholar
Lauer, T. R. 1985, ApJ, 292, 104.Google Scholar
Lauer, T. R., et al. 1995, AJ, 110, 2622.Google Scholar
Martimbeau, N., Carignan, C., & Roy, J.-R. 1994, AJ, 107, 543.Google Scholar
Mateo, M. 1994, in ESO/OHP Workshop on Dwarf Galaxies, ed. Meylan, G. & Prugniel, P. (Garching: ESO), 309.Google Scholar
Mateo, M. 1997, in The Second Stromlo Symposium: The Nature of Elliptical Galaxies, ed. Arnaboldi, M., Da Costa, G. S., & Saha, P. (San Francisco: ASP), 259.Google Scholar
Mateo, M. 1998, ARA&A, 36, 435.Google Scholar
Mateo, M., Olszewski, E. W., Pryor, C., Welch, D. L., & Fischer, P. 1993, AJ, 105, 510.Google Scholar
Mateo, M., Olszewski, E. W., Vogt, S. S., & Keane, M. J. 1998, AJ, 116, 2315.Google Scholar
Merritt, D. 1987, ApJ, 313, 121.Google Scholar
Meurer, G. R., Carignan, C., Beaulieu, S. F., & Freeman, K. C. 1996, AJ, 111, 1551.Google Scholar
Meurer, G. R., Staveley-Smith, L., & Killeen, N. E. B. 1998, MNRAS, 300, 705.Google Scholar
Milgrom, M. 1983a, ApJ, 270, 365.Google Scholar
Milgrom, M. 1983b, ApJ, 270, 371.Google Scholar
Milgrom, M. 1983c, ApJ, 270, 384.Google Scholar
Milgrom, M., & Bekenstein, J. 1987, in IAU Symposium 117, Dark Matter in the Universe, ed. Kormendy, J. & Knapp, G. R. (Dordrecht: Reidel), 319.Google Scholar
Miller, B. W., & Rubin, V. C. 1995, AJ, 110, 2692.Google Scholar
Moore, B. 1994, Nature, 370, 629.Google Scholar
Moore, B., et al. 1999, ApJ, 524, L19.CrossRefGoogle Scholar
Navarro, J. F., Frenk, C. S., & White, S. D. M. 1996, ApJ, 462, 563 (NFW).Google Scholar
Navarro, J. F., Frenk, C. S., & White, S. D. M. 1997, ApJ, 490, 493 (NFW).Google Scholar
Oh, K. S., Lin, D. N. C., & Aarseth, S. J. 1995, ApJ, 442, 142.Google Scholar
Olszewski, E. W., Pryor, C., & Armandroff, T. E. 1996, AJ, 111, 750.Google Scholar
Palma, C., et al. 2003, AJ, 125, 1352.Google Scholar
Peebles, P. J. E. 1974, ApJ, 189, L51.CrossRefGoogle Scholar
Piatek, S., & Pryor, C. 1995, AJ, 109, 1071.Google Scholar
Piatek, S., Pryor, C, Armandroff, T. E., & Olszewski, E. W. 2001, AJ, 121, 841.Google Scholar
Piatek, S., Pryor, C, Armandroff, T. E., & Olszewski, E. W. 2002, AJ, 123, 2511.Google Scholar
Pryor, C. 1992, in Morphological and Physical Classification of Galaxies, ed. Longo, G., Capaccioli, M., & Busarello, G. (Dordrecht: Kluwer), 163.Google Scholar
Pryor, C., and Kormendy, J. 1990, AJ, 100, 127.Google Scholar
Puche, D., Carignan, C., & Wainscoat, R. J. 1991, AJ, 101, 447.Google Scholar
Ricotti, M. 2003, MNRAS, 344, 1237.Google Scholar
Sackett, P. D. 1997, ApJ, 483, 103.Google Scholar
Sellwood, J. A., & Pryor, C. 1998, Highlights Astron., 11, 638.Google Scholar
Shapiro, P. R., & Iliev, I. T. 2002, ApJ, 565, L1.Google Scholar
Sicotte, V., & Carignan, C. 1997, AJ, 113, 609.Google Scholar
Skillman, E. D., Bothun, G. D., Murray, M. A., & Warmels, R. H. 1987, A&A, 185, 61.Google Scholar
Swaters, R. A., Madore, B. F., & Trewhella, M. 2000, ApJ, 531, L107.Google Scholar
Swaters, R. A., Madore, B.F., van den Bosch, F. C., & Balcells, M. 2003, ApJ, 583, 732.CrossRefGoogle Scholar
Taga, M., & lye, M. 1994, MNRAS, 271, 427.Google Scholar
Tonry, J. L., et al. 2001, ApJ, 546, 681.Google Scholar
Toomre, A. 1981, in The Structure and Evolution of Normal Galaxies, ed. Fall, S. M. & Lynden-Bell, D. (Cambridge: Cambridge University Press), 111.Google Scholar
Tremaine, S. 1987, in Nearly Normal Galaxies: From the Planck Time to the Present, ed. Faber, S. M. (New York: Springer), 76.CrossRefGoogle Scholar
Tully, R. B., & Fisher, J. R. 1977, A&A, 54, 661.Google Scholar
Tully, R. B., & Fouque, P. 1985, ApJS, 58, 67.Google Scholar
van Albada, T. S., Bahcall, J. N., Begeman, K., & Sancisi, R. 1985, ApJ, 295, 305.Google Scholar
van Zee, L., Haynes, M. P., Salzer, J. J., & Broeils, A. H. 1997, AJ, 113, 1618.CrossRefGoogle Scholar
Verdes-Montenegro, L., Bosma, A., & Athanassoula, E. 1997, A&A, 321, 754.Google Scholar
Verheijen, M. A. W. 1997, PhD Thesis, Rijksuniversiteit Groningen.Google Scholar
Weiner, B. J., 2004, in IAU Symposium 220, Dark Matter in Galaxies, ed. Ryder, S., Pisano, D. J., Walker, M., & Freeman, K. C. (San Francisco: ASP), in press.Google Scholar
Weiner, B. J., Sellwood, J. A., & Williams, T. B. 2001, ApJ, 546, 931.Google Scholar
Weldrake, D. T. F., de Blok, W. J. G., & Walter, F. 2003, MNRAS, 340, 12.Google Scholar
Wilkinson, M. I., 2004, in IAU Symposium 220, Dark Matter in Galaxies, ed. Ryder, S., Pisano, D. J., Walker, M., & Freeman, K. C. (San Francisco: ASP), in press.Google Scholar