Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-05-01T10:06:15.424Z Has data issue: false hasContentIssue false

The Role of Grains in Interstellar Chemistry

Published online by Cambridge University Press:  04 August 2017

D. A. Williams*
Affiliation:
Mathematics Department, UMIST, P.O. Box 88, Manchester M60 1QD, England

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Grains affect interstellar chemistry in a variety of ways. Most obviously, they extinguish starlight and thus protect molecules in cloud interiors from photodestruction. The grains themselves contain substantial proportions of particular elements which are therefore less readily available for gas phase reactions and for processing into molecules. Grains in dense clouds are known to accrete molecular mantles which may be further processed; the mantle material is ultimately returned to the gas, either near hot stars or when the clouds are dissipated. Molecular hydrogen, the key to all gas phase chemistry, is undoubtedly formed efficiently on grains, and a plausible mechanism can now be identified. Other molecules, too, form preferentially at surfaces. Finally, the destruction of grains via chemical erosion and by sputtering in shocks provides a substantial molecular contribution to the gas in local regions.

Type
Grains
Copyright
Copyright © Reidel 1987 

References

Allamandola, L.J., Tielens, A.G.G.M., and Barker, J.R. 1985. Ap. J. 290, L25.CrossRefGoogle Scholar
Bar-Nun, A. 1975. Ap. J. 197, 341.CrossRefGoogle Scholar
Bar-Nun, A., Litman, M., Pasternak, M. and Rappaport, M.L. 1980. in ‘Interstellar Molecules’ ed. Andrew, B.H. (D. Riedel).Google Scholar
Bar-Nun, A., Litman, M. and Rappaport, M.L. 1980 Astr. Ap. 85, 197.Google Scholar
Bhat, C.L., Issa, M., Houston, B.P., Mayer, C.J. and Wolfendale, A.W. 1985. Nature, 314, 511.Google Scholar
Draine, B.T. and Lee, H.M. 1984 Ap. J. 285, 89.Google Scholar
Draine, B.T., Roberge, W.G. and Dalgarno, A. 1983. Ap. J. 264, 485.Google Scholar
Duley, W.W. 1974 Ap. Sp. Sci. 26, 199.Google Scholar
Duley, W.W., Millar, T.J. and Williams, D.A. 1978. MNRAS, 185, 915.Google Scholar
Duley, W.W., Millar, T.J. and Williams, D.A. 1980. MNRAS, 192, 945.Google Scholar
Duley, W.W. and Najdowsky, I. 1985. Ap. Sp. Sci. 95, 187.Google Scholar
Duley, W.W. and Williams, D.A. 1981 MNRAS, 196, 269.Google Scholar
Duley, W.W. and Williams, D.A. 1983 MNRAS, 205, 67P.Google Scholar
Duley, W.W. and Williams, D.A. 1984a ‘Interstellar Chemistry’ (Academic Press: London).Google Scholar
Duley, W.W. and Williams, D.A. 1984b MNRAS, 211, 97.Google Scholar
Flower, D.R., Pineau des Forets, G. and Hartquist, T.W. 1985. MNRAS, 216, 775.Google Scholar
Gill, P.S., Toomey, R.E. and Moser, H.C. 1967. Carbon, 5, 43.Google Scholar
Greenberg, J.M. 1982. ‘Submillimetre Wave Astronomy’ (eds. Beckman, J.E. and Phillips, J.P.) p.261 (Cambridge U.P.).Google Scholar
Hagen, W., Tielens, A.G.G.M. and Greenberg, J.M. 1983. Ast. Ap. 117, 132.Google Scholar
Harris, D.H., Wolf, N.J. and Rieke, G.H. 1978. Astrophys. J. 226, 829.Google Scholar
Hartquist, T.W., Oppenheimer, M. and Dalgarno, A. 1980. Ap. J. 236, 182.CrossRefGoogle Scholar
Hoyle, F. and Wickramasinghe, N.C. 1979. Ap. Sp. Sci. 66, 77.Google Scholar
Hoyle, F. and Wickramasinghe, N.C. 1982. Ap. Sp. Sci. 86, 321.Google Scholar
Jones, A.P., Williams, D.A. and Duley, W.W. 1983. Ap. Sp. Sci. 96, 141.Google Scholar
Jones, A.P. and Williams, D.A. 1984. MNRAS, 209, 955.Google Scholar
Knacke, R.F., McCorkle, S., Puetter, R.C., Erickson, E.F. and Krätschmer, W. 1982. Ap. J. 260, 141.CrossRefGoogle Scholar
Kutner, M.L. and Leung, C.M. 1985. Ap. J. 291, 188.Google Scholar
Lacy, J.H., Baas, F., Allamandola, L.J., Persson, S.E., McGregor, P.J., Lonsdale, C.J., Geballe, T.R. and van de Bult, C.E.P. 1984. Ap. J. 276, 533.Google Scholar
Leger, A., Gauthier, S., Defourneau, D. and Rouan, D. 1983. Astr. Ap. 117, 164.Google Scholar
Leger, A. and Puget, J.L. 1984. Astr. Ap. 137, L5.Google Scholar
Leitch-Devlin, M.A. and Williams, D.A. 1984. MNRAS, 210, 577.Google Scholar
Leitch-Devlin, M.A. and Williams, D.A. 1985. MNRAS, 213, 295.Google Scholar
Mann, A.P.C. and Williams, D.A. 1984. MNRAS, 209, 33.Google Scholar
Mann, A.P.C. and Williams, D.A. 1985. MNRAS, 214, 279.Google Scholar
Mathis, J.S., Rumpl, W. and Nordsieck, K.H. 1977. Ap. J. 217, 425.Google Scholar
Mauersberger, R., Wilson, T.L., Batrla, W., Walmsley, C.M. and Henkel, C. 1984. Astr. Ap. in press.Google Scholar
Menten, K.M., Johnston, K.J., Wilson, T.L., Walmsley, C.M., Mauersberger, R. and Henkel, C. 1985. Ap. J. 293, L83.Google Scholar
Millar, T.J. 1979. MNRAS, 189, 507.Google Scholar
Oloffson, H. 1984. Astr. Ap. 134, 36.Google Scholar
Pauls, T.A., Wilson, T.L., Bieging, J.H. and Martin, R.N. 1983. Astr. Ap. 124, 23.Google Scholar
Sanders, D.B., Solomon, P.M. and Scoville, N.Z. 1984. Ap. J. 276, 182.Google Scholar
Watt, G.D. 1983. MNRAS, 205, 321.Google Scholar
Whittet, D.C.B. 1984. MNRAS, 210, 479.CrossRefGoogle Scholar
Whittet, D.C.B., Bode, M.F., Longmore, A.J., Baines, D.W.T. and Evans, A. 1983. Nature, 303, 218.Google Scholar
Whittet, D.C.B. and Blades, J.C. 1980. MNRAS, 191, 309.Google Scholar
Whittet, D.C.B., Longmore, A.J. and McFadzean, A.D. 1985. MNRAS, 216, 45P.Google Scholar
Williams, D.A. 1985. QJRAS, in press.Google Scholar
Willner, S.P., Russell, R.W., Puetter, R.C., Soifer, B.T. and Harvey, P.M. 1979. Ap. J. 229, L65.Google Scholar
Wilson, T.L., Mauersberger, R., Walmsley, C.M., and Batrla, W. 1983. Astr. Ap. 127, L19.Google Scholar