Hostname: page-component-77c89778f8-cnmwb Total loading time: 0 Render date: 2024-07-19T19:25:26.089Z Has data issue: false hasContentIssue false

A Probe of Planck Energy Physics

Published online by Cambridge University Press:  25 May 2016

F. Occhionero
Affiliation:
Osservatorio Astronomico di Roma Via del Parco Mellini 84, 00136 Roma - ITALY
S. Monastra
Affiliation:
Osservatorio Astronomico di Roma Via del Parco Mellini 84, 00136 Roma - ITALY
C. Baccigalupi
Affiliation:
Osservatorio Astronomico di Roma Via del Parco Mellini 84, 00136 Roma - ITALY
L. Amendo
Affiliation:
Osservatorio Astronomico di Roma Via del Parco Mellini 84, 00136 Roma - ITALY

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Large scale voids are a very prominent feature in recent redshift surveys: here we attempt an explanation in terms of a first order phase transition occurring during the slow roll epoch of a two field inflation, a process where one field drives the slow roll while the other undergoes quantum tunneling through a potential barrier. The ensuing bubble like perturbations – nucleated at a number of e-folds N ≈ 55 before reheating – are thought to be the precursors of the voids we observe today, while the zero-point fluctuations of the inflaton are the small, Gaussian perturbations seen by COBE on the large angular scales.

If this is so, primordial bubbles must have left a trace on the CMB, unless Silk damping and/or early reionization have erased it. We predict this imprint to have power on small angular scales, ≈ 10 arcmin or ≈ ≈ 1000. Therefore the physics at the Planck energy may be tested astronomically both indirectly through the large scale structure and directly through the forthcoming high resolution MAP and Planck satellites.

Type
V. Cosmological Models
Copyright
Copyright © Kluwer 1999 

References

Adams, F.C. and Freese, K., Phys. Rev. D 43 353 (1991).CrossRefGoogle Scholar
Amendola, L., Baccigalupi, C. & Occhionero, F., Phys. Rev. D 54 4760 (1996).CrossRefGoogle Scholar
Amendola, L., Baccigalupi, C., Konoplich, R., Occhionero, F.F. & Rubin, S. Phys. Rev. D 54 7199 (1996).CrossRefGoogle Scholar
Amendola, L., Baccigalupi, C., & Occhionero, F. Astrophys. J. Lett. in press (1997).Google Scholar
Baccigalupi, C. submitted Astrophys. J. (1997).Google Scholar
Baccigalupi, C., Amendola, L., & Occhionero, F. Mon. Not. R. Astr. Soc. 288 387 (1997).CrossRefGoogle Scholar
Berezin, V.A., Kuzmin, V.A. & Tkachev, I.I Phys. Rev. D 36 2519 (1987)CrossRefGoogle Scholar
Bertschinger, E. Astrophys. J. Suppl. 58 1 (1985).Google Scholar
Broadhurst, T.J., Ellis, R.S., Koo, D.C. & Szalay, A.S. Nature 343 726 (1990).Google Scholar
Cohen, J.G., Hogg, D.W., Pahre, M.A. & Blandford, R. Astrophys. J. 462 L9 (1996).CrossRefGoogle Scholar
Coleman, S. and De Luccia, F., Phys. Rev. D 21 3305 (1980).CrossRefGoogle Scholar
Da Costa, L.N. et al. Astrophys. J. 468 L5 (1996).CrossRefGoogle Scholar
El-Ad, H., Piran, T. & Da Costa, L.N. Astrophys. J. 462 L13 (1996).CrossRefGoogle Scholar
El-Ad, H., Piran, T. & Da Costa, L.N. M.N.R.A.S. 287 790 (1997).CrossRefGoogle Scholar
Hu, W. & Sugiyama, N. Astrophys. J. 444 489 (1995).CrossRefGoogle Scholar
Jones, B. J.T. & Wyse, R.F.G. Astron. Astrophys 149 144 (1985).Google Scholar
Kolb, E.W., Physica Scripta T36 199 (1991).CrossRefGoogle Scholar
La, D., Phys. Lett. B 265 232 (1991); La, D. and Steinhardt, P. J. Phys. Rev. Lett. 62 376 (1989).Google Scholar
Lauer, T.R. & Postman, M. Astrophys. J. 400 L47 (1992).CrossRefGoogle Scholar
Occhionero, F., Santangelo, P. & Vittorio, N., Astron. Astrophys. 117 365 (1983).Google Scholar
Occhionero, F.F. & Amendola, L., Phys. Rev. D 50 4846 (1994).Google Scholar
Occhionero, F., Baccigalupi, C., Amendola, L. and Monastra, S., Phys. Rev. D 56 in press (1997).Google Scholar
Padmanabahn, T., Structure Formation in the Universe Cambridge University Press 1993.Google Scholar
Pietronero, L. & Sylos-Labini, F. in Birth of the Universe and Fundamental Physics, p.17, Occhionero, F. ed, Springer Verlag, Heidelberg (1995); Sylos-Labini, F. & Pietronero, L., ibid., p. 317;CrossRefGoogle Scholar
Pietronero, L., Montuori, M. & Sylos-Labini, F. in Critical Dialogues in Cosmology, p. 24, Turok, N. ed., World Scientific, Singapore (1997).Google Scholar
Piran, T. in Fundamental Physics at the Birth of the Universe, II Rome, May 1997, Occhionero, F. ed., Kluwer Ac. Publ. Google Scholar
Sakai, N., Maeda, K. & Sato, H. Progr. Theor. Phys. 89 1193 (1993).CrossRefGoogle Scholar
Shandarin, S. in Fundamental Physics at the Birth of the Universe, II Rome, May 1997, Occhionero, F. ed., Kluwer Ac. Publ. Google Scholar
Shandarin, S. & Zel'dovich, Ya.B., Rev. Mod. Phys. 61 185 (1989).CrossRefGoogle Scholar
Smoot, G., et al. Astrophys. J. 396 489, L1 (1992).Google Scholar
Strauss, M.A., Cen, R., Ostriker, J.P., Lauer, T.R. & Postman, M. Astrophys. J. 444 507 (1996).Google Scholar
Vadas, S. Phys. Rev. D 48 4562 (1993).CrossRefGoogle Scholar
Vadas, S.L., in Proc. Seventeenth Texas Symposium , Böringer, H. et al. eds., p. 710, NYAS, New York, NY (1995).Google Scholar
Whitt, B., Phys. Lett. 145B 176 (1984).CrossRefGoogle Scholar
Yoshioka, S. and Ikeuchi, S., Astrophys. J. 341 16 (1989).CrossRefGoogle Scholar