Hostname: page-component-68945f75b7-fzmlz Total loading time: 0 Render date: 2024-08-05T18:50:23.607Z Has data issue: false hasContentIssue false

The pre-supernova evolution of rotating massive stars

Published online by Cambridge University Press:  26 May 2016

Alexander Heger
Affiliation:
Department of Astronomy and Astrophysics, Enrico Fermi Institute, The University of Chicago, 5640 S. Ellis Ave, Chicago, IL 60637, USA
Stan E. Woosley
Affiliation:
Astronomy and Astrophysics Department, University of California, Santa Cruz, CA 95064, USA
Norbert Langer
Affiliation:
Sterrekundig Instituut, Universiteit Utrecht, Princetonplein 5, NL-3584 CC Utrecht, Nederland

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Massive stars are born rotating rigidly with a significant fraction of critical rotation at the surface. Consequently, rotationally-induced circulation and instabilities lead to chemical mixing in regions that would otherwise be stable, as well as a redistribution of angular momentum. Differential rotation also winds up magnetic fields, causing instabilities that can power a dynamo and magnetic stresses that lead to additional angular momentum transport. We follow the evolution of typical massive stars, their structure and angular momentum distribution, from the zero-age main sequence until iron core collapse. Without the action of magnetic fields, the resulting angular momentum is sufficiently large to significantly affect the explosion mechanism and neutron star formation. Sub-millisecond pulsars result that could encounter the r-mode instability. In helium cores massive enough, at least at low metalicity, the angular momentum is also sufficiently great to form a centrifugally supported accretion disk around a central black hole, powering the engine of the ‘collapsar’ model for GRBs. Including current estimates of the effect of magnetic fields still allows the formation of rapidly rotating (~ 5-10 ms) pulsars, but might leave too little angular momentum for collapsars.

Type
Part 2. Interiors of Massive Stars
Copyright
Copyright © Astronomical Society of the Pacific 2003 

References

Chaboyer, B., Zahn, J.-P. 1992, A&A 253, 173.Google Scholar
Endal, A.S., Sofia, S. 1976, ApJ 210, 184.Google Scholar
Endal, A.S., Sofia, S. 1978, ApJ 220, 279.Google Scholar
Fliegner, J., Langer, N., Venn, K.A. 1996, A&A 308, 13.Google Scholar
Fryer, C.L., Heger, A. 2000, ApJ 541, 1033.CrossRefGoogle Scholar
Fryer, C.L., Kalogera, V. 2001, ApJ 554, 548.CrossRefGoogle Scholar
Fukuda, I. 1982, PASP 94, 271.Google Scholar
Heger, A. 1998, , .Google Scholar
Heger, A., Langer, N. 2001, ApJ 544, 1016.CrossRefGoogle Scholar
Heger, A., Langer, N., Woosley, S.E. 2000, ApJ 528, 368.Google Scholar
Joss, P.C., Becker, J.A. 2003, in: Hillebrandt, W. & Leibundgut, B. (eds.), From Twilight to Highlight, ESO Astrophysics Symposia (Berlin: Springer), in press.Google Scholar
Kippenhahn, R., Weigert, A. 1990, Stellar Structure and Evolution (Berlin: Springer).Google Scholar
Lindblom, L., Owen, B.J., Morsink, S.M. 1998, Phys. Rev. Letters 80, 4843.CrossRefGoogle Scholar
Lindblom, L., Tohline, J.E., Vallisneri, M. 2001, Phys. Rev. Letters 86, 1152.Google Scholar
MacFadyen, A.I., Woosley, S.E. 1999, ApJ 524, 262.CrossRefGoogle Scholar
MacFadyen, A.I., Woosley, S.E., Heger, A. 2001, ApJ 550, 410.CrossRefGoogle Scholar
Maeder, A., Meynet, G., 2000, Ann. Review Astron. Astrophys. 38, 143.Google Scholar
Marshall, F.E., Gotthelf, E.V., Zhang, W., Middleditch, J., Wang, Q.D. 1998, ApJ (Letters) 499, L179.CrossRefGoogle Scholar
Meynet, G., Maeder, A. 1997, A&A 321, 465.Google Scholar
Pinsonneault, M.H. 1997, Ann. Review Astron. Astrophys. 35, 557.Google Scholar
Pinsonneault, M.H., Kawaler, S.D., Sofia, S., Demarque, P. 1989, ApJ 338, 424.Google Scholar
Spruit, H.C. 2002, A&A 381, 923.Google Scholar
Spruit, H.C., Phinney, E.S. 1998, Nature 393, 139.Google Scholar
Weaver, T.A., Zimmerman, G.B., Woosley, S.E. 1978, ApJ 225, 1021.Google Scholar
Woosley, S.E. 1993, ApJ 405, 273.Google Scholar
Woosley, S.E., Heger, A., Weaver, T.A. 2002, Rev. Mod. Phys. 74, 1015.Google Scholar
Zahn, J.-P. 1992, A&A 265, 115.Google Scholar