Hostname: page-component-7bb8b95d7b-l4ctd Total loading time: 0 Render date: 2024-09-11T07:39:19.388Z Has data issue: false hasContentIssue false

Outflows from Newborn Multiple Stars

Published online by Cambridge University Press:  13 May 2016

Bo Reipurth*
Affiliation:
Center for Astrophysics and Space Astronomy, University of Colorado, Boulder, CO 80309, USA

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Analysis of a sample of giant Herbig-Haro flow sources shows that 79%–86% are binaries or higher order multiples. This represents the youngest sample of stars studied so far for binarity. A stellar dynamics jet hypothesis is proposed in which the dynamical decay of triple or multiple systems leads to giant outflow activity. Close triple approaches will cause serious perturbations and probably direct collisions among individual circumstellar disks, with a consequent burst of outflow activity, which can produce giant HH bow shocks. As one component is ejected, the two remaining stars and their small truncated disks form a closer bound pair with high eccentricity. Gas streams from a circumbinary disk feed the stars and this as well as other dynamical effects cause the binary orbit to shrink. As the stellar components gradually spiral towards each other, accretion and outflow becomes cyclic, modulated on an orbital time scale. The resulting HH flows can be read as a fossil record of the evolution of orbital motions of the newly formed binary as it shrinks from a typical separation of 100 AU or more to 10 AU or less. After a triple disintegration event, both components (star and close binary) leave their nascent envelope, and while one component becomes visible as a T Tauri star, the other will be obscured for a while by the envelope and will appear as a bright near-infrared object, thus explaining the socalled IRC binaries which are infrequently found in star forming regions.

Type
VII. Environments of Young Binaries - Direct Imaging
Copyright
Copyright © Astronomical Society of the Pacific 2001 

References

Armitage, P. J., Clarke, C. J. 1997, MNRAS, 285, 540.Google Scholar
Artymowicz, P., Lubow, S. H. 1994, ApJ, 421, 651.Google Scholar
Artymowicz, P., Lubow, S. H. 1996, ApJ, 467, L77.Google Scholar
Artymowicz, P., Clarke, C. J., Lubow, S. H., Pringle, J. E. 1991, ApJ, 370, L35.Google Scholar
Avery, L. W., Hayashi, S. S., White, G. J. 1990, ApJ, 357, 524.CrossRefGoogle Scholar
Bachiller, R., Fuente, A., Tafalla, M. 1995, ApJ, 445, L51.CrossRefGoogle Scholar
Bodenheimer, P., Burkert, A., Klein, R. I., Boss, A. P. 2000, in Protostars and Planets IV, ed. Mannings, V., Boss, A., Russell, S., Univ. of Arizona Press, 675.Google Scholar
Bontemps, S., André, P., Terebey, S., Cabrit, S. 1996, A&A, 311, 858.Google Scholar
Fridlund, C. V. M., Liseau, R. 1998, ApJ, 499, L75.Google Scholar
Ghez, A. M., Neugebauer, G., Matthews, K. 1993, AJ, 106, 2005.Google Scholar
Gorti, U., Bhatt, H. C. 1996, MNRAS, 283, 566.CrossRefGoogle Scholar
Hall, S. M., Clarke, C. J., Pringle, J. E. 1996, MNRAS, 278, 303.Google Scholar
Heggie, D. C. 1975, MNRAS, 173, 729.CrossRefGoogle Scholar
Hodapp, K.-W., Ladd, E. F. 1995, ApJ, 453, 715.Google Scholar
Koresko, C. D., Herbst, T. M., Leinert, Ch. 1997, ApJ, 480, 741.Google Scholar
Köhler, R. Leinert, C. 1998, A&A, 331, 977.Google Scholar
Larson, R. B. 2001, in IAU Symposium No. 200 on The Formation of Binary Stars, ed. Zinnecker, H. & Mathieu, R. D., ASP, this volume.Google Scholar
Mathieu, R. D., Stassun, K., Basri, G., Jensen, E. L. N., Johns-Krull, C. M., Valenti, J. A., Hartmann, L. W. 1997, AJ, 113, 1841.Google Scholar
Mizuno, A., Fukui, Y., Iwata, T., Nozawa, S., Takano, T. 1990, ApJ, 356, 184.CrossRefGoogle Scholar
Pudritz, R. E., Norman, C. A. 1986, ApJ, 301, 571.Google Scholar
Reipurth, B. 2000, AJ, in press.Google Scholar
Reipurth, B., Zinnecker, H. 1993, A&A, 278, 81.Google Scholar
Reipurth, B., Bally, J., Devine, D. 1997, AJ, 114, 2708.CrossRefGoogle Scholar
Reipurth, B., Yu, K. C., Rodríguez, L. F., Heathcote, S., Bally, J. 1999, A&A, 352, L86.Google Scholar
Sahai, R., Nyman, L. A. 2000, ApJ, 537, L145.Google Scholar
Sandell, G., Knee, L., Aspin, C., Robson, I., Russell, A. 1994, A&A, 285, L1.Google Scholar
Shu, F. H., Najita, J., Ostriker, E., Wilkin, F., Ruden, S., Lizano, S. 1994, ApJ, 429, 781.CrossRefGoogle Scholar
Spruit, H. 1987, A&A, 184, 173.Google Scholar
Sterzik, M. F., Durisen, R. H. 1995, A&A, 304, L9.Google Scholar
Sterzik, M. F., Durisen, R. H. 1998, A&A, 339, 95.Google Scholar
Tokovinin, A. A. 1997, Astronomy Letters, 23, 727.Google Scholar
Valtonen, M., Mikkola, S. 1991, ARAA, 29, 9.CrossRefGoogle Scholar
Watkins, S. J., Bhattal, A. S., Boffin, H. M. J., Francis, N., Whitworth, A. P. 1998, MNRAS, 300, 1205.CrossRefGoogle Scholar