Hostname: page-component-7c8c6479df-r7xzm Total loading time: 0 Render date: 2024-03-19T02:13:26.601Z Has data issue: false hasContentIssue false

Outflows from ellipticals: the role of supernovae

Published online by Cambridge University Press:  26 May 2016

Francesca Matteucci
Affiliation:
Dipartimento di Astronomia, Universitá degli Studi di Trieste, Via G.B. Tiepolo 11, I-34100 Trieste, Italia
Antonio Pipino
Affiliation:
Dipartimento di Astronomia, Universitá degli Studi di Trieste, Via G.B. Tiepolo 11, I-34100 Trieste, Italia

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Models of supernova (SN) driven galactic winds for ellipticals are presented. We assume that ellipticals formed at high redshift and suffered an intense burst of star formation. The role of supernovae of Type II and Type Ia in the chemical enrichment and in triggering galactic winds is studied. In particular, several recipes for SN feed-back together with detailed nucleosynthesis prescriptions are considered. It is shown that SNe of Type II have a dominant role in enriching the interstellar medium of elliptical galaxies whereas Type Ia SNe dominate the enrichment and the energetics of the intracluster medium.

Type
Part 4. Feedback from Massive Stars
Copyright
Copyright © Astronomical Society of the Pacific 2003 

References

Arimoto, N., Yoshii, Y. 1987, A&A 173, 23.Google Scholar
Bradamante, F., Matteucci, F., D'Ercole, A. 1998, A&A 337, 338.Google Scholar
Cioffi, D.F., McKee, C.F., Bertschinger, E. 1998, ApJ 334, 252.CrossRefGoogle Scholar
Cox, D.P. 1972, ApJ 178, 159.Google Scholar
Kauffmann, G., White, S.D.M., Guiderdoni, B. 1993, MNRAS 264, 201.Google Scholar
Kuntschner, H., Lucey, J.R., Smith, R.J., Hudson, M.J., Davies, R.L. 2001, MNRAS 323, 615.CrossRefGoogle Scholar
Larson, B.R. 1974, MNRAS 166, 585.Google Scholar
Matteucci, F., Greggio, L. 1986, A&A 154, 279.Google Scholar
Matteucci, F., Tornambè, A. 1987, A&A 185, 51.Google Scholar
Matteucci, F. 1992, ApJ 397, 32.Google Scholar
Matteucci, F., Recchi, S. 2001, ApJ 558, 351.Google Scholar
Matteucci, F., Pipino, A. 2002, ApJ (Letters) 569, L69.Google Scholar
Pettini, M., Rix, S.A., Steidel, C.C., Adelberger, K.L., Hunt, M.P., Shapley, A.E. 2002, ApJ 569, 742.CrossRefGoogle Scholar
Pipino, A., Matteucci, F., Borgani, S., Biviano, A. 2002, New Astron. 7, 227.Google Scholar
Recchi, S., Matteucci, F., D'Ercole, A. 2001, MNRAS 322, 800.Google Scholar
Renzini, A., Voli, M. 1981, A&A 94, 175.Google Scholar
Salpeter, E.E. 1955, ApJ 121, 161.Google Scholar
Thielemann, F.K., Nomoto, K., Hashimoto, M.A. 1993, in: Prantzos, N. et al. (eds.), Origin and Evolution of the Elements (Cambridge: CUP), p. 297.Google Scholar
Tinsley, B.M., Larson, R.B. 1979, MNRAS 186, 503.CrossRefGoogle Scholar
Weiss, A., Peletier, R.F., Matteucci, F. 1995, A&A 296, 73.Google Scholar
Woosley, S.E., Weaver, T.A. 1995, ApJS 101, 181.Google Scholar
Worthey, G, Faber, S.M., González, J.J. 1992, ApJ 398, 69.Google Scholar