Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-26T16:09:50.228Z Has data issue: false hasContentIssue false

The Origin of Type Ib-Ic-IIb-IIL Supernovae and Binary Star Evolution

Published online by Cambridge University Press:  25 May 2016

K. Nomoto
Affiliation:
Department of Astronomy, University of Tokyo
K. Iwamoto
Affiliation:
Department of Astronomy, University of Tokyo
T. Suzuki
Affiliation:
Department of Astronomy, University of Tokyo
O.R. Pols
Affiliation:
Institute of Astronomy, University of Cambridge
H. Yamaoka
Affiliation:
Department of Physics, Kyushu University
M. Hashimoto
Affiliation:
Department of Physics, Kyushu University
P. Höflich
Affiliation:
Department of Astronomy, Harvard University
E.P.J. Van Den Heuvel
Affiliation:
Astronomical Institute, University of Amsterdam

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Supernovae are classified as type I and type II and further subdivided into Ia, Ib, Ic, II-P, II-L, and IIb. The origin of this observational diversity has not been well understood. The recent nearby supernovae SN 1993J and SN 1994I have provided particularly useful material to clarify the supernova — progenitor connection. For a progenitor of type IIb supernova 1993J, we propose that merging of two stars in a close binary is responsible for the formation of a thin H-rich envelope. As a progenitor of type Ic supernova 1994I, we propose a bare C+O star that has lost both its H and He envelope after a common-envelope phase. By generalizing these scenarios, we show that common-envelope evolution in massive close binary stars leads to various degrees of stripping off of the envelope of a massive star. This naturally leads to an explanation of the origin of type II-L, IIn, IIb, Ib, and Ic in a unified manner. The binary hypothesis to explain the diversity of supernovae can be substantiated with new information on SN IIb 1993J and SN Ic 1994I. Model light curves are compared with observations. Since extensive mass loss is essential for the binary scenario, circumstellar interactions are examined for comparison with X-ray observations.

Type
2 Supernovae in Binaries
Copyright
Copyright © Kluwer 1996 

References

Arnett, W.D. et al. 1989, ARA&A 27, 629.Google Scholar
Bhattacharya, D. & Van den Heuvel, E.P.J. 1991, Phys. Rep. 203, 1.Google Scholar
Blinnikov, S.I. & Bartunov, O.S. 1993, A&A 273, 106.Google Scholar
Branch, D., Nomoto, K. & Filippenko, A.V. 1991, Comm. Astrophysics 15, 221.Google Scholar
Cappellaro, E. et al. 1994, A&A (in press).Google Scholar
Clocchiatti, A. & Wheeler, J.C. 1994, IAU Circ. 6005.Google Scholar
Ensman, L.M. & Woosley, S.E. 1988, ApJ 333, 754.CrossRefGoogle Scholar
Filippenko, A.V. 1988, AJ 96, 1941.Google Scholar
Filippenko, A.V. 1991, in Supernovae and Stellar Evolution , Ray, A. & Velusamy, T. (Eds.), World Scientific (Singapore), p. 58.Google Scholar
Filippenko, A.V., Porter, A.C. & Sargent, W.L.W. 1990, AJ 100, 1575.Google Scholar
Fransson, C. 1994, talk at the 17th Texas Symposium on Relativistic Astrophysics.Google Scholar
Fransson, C., Lundqvist, P. & Chevalier, R.A. 1994, ApJ (submitted).Google Scholar
Habets, G.M.H.J. 1986, A&A 187, 209.Google Scholar
Hachisu, I. et al. 1991, ApJ 368, L27.Google Scholar
Hashimoto, M., Iwamoto, K. & Nomoto, K. 1993, ApJ 414, L105.CrossRefGoogle Scholar
Hashimoto, M. et al. 1993, in Nuclei in the Cosmos , Käppeler, F. & Wisshak, K. (Eds.), IOP Pub. (Bristol), p. 587.Google Scholar
Iwamoto, K. et al. 1994, ApJ 437, L115.Google Scholar
Kirshner, R. 1994, talk at the 17th Texas Symposium on Relativistic Astrophysics.Google Scholar
Lucy, L.B. 1991, ApJ 383, 308.Google Scholar
Marcaide, J. M. et al. 1995, Nat 373, 44.Google Scholar
Muller, R.A., et al. 1992, ApJ 384, L9.Google Scholar
Nomoto, K. & Hashimoto, M. 1988, Phys. Rep. 163, 13.Google Scholar
Nomoto, K., Filippenko, A.V. & Shigeyama, T. 1990, A&A 240, L1.Google Scholar
Nomoto, K. et al. 1993, Nat 364, 507.Google Scholar
Nomoto, K. et al. 1994, Nat 371, 227.Google Scholar
Nomoto, K. et al. 1994, in New Horizon of X-Ray Astronomy , Makino, F. & Ohashi, T. (Eds.), Universal Academy Press (Tokyo), p. 139.Google Scholar
Nomoto, K. et al. 1994, in Supernovae , Bludman, S.A. et al. (Ed.), Elsevier (New York), p. 489.Google Scholar
Nomoto, K., Iwamoto, K. & Suzuki, T. 1995, Phys. Rep. (in press).Google Scholar
Panagia, N. 1987, in High Energy Phenomena Around Collapsed Stars , Pacini, F. (Ed.), Reidel (Dordrecht), p. 33.Google Scholar
Patat, F., Chugai, N.N. & Mazzali, P.A. 1995, A&A (in press).Google Scholar
Podsiadlowski, Ph., Joss, P.C. & Hsu, J.J.L. 1992, ApJ 391, 246.Google Scholar
Podsiadlowski, Ph. et al. 1993, Nat 364, 509.Google Scholar
Pols, O.R. et al. 1991, A&A 241, 419.Google Scholar
Pols, O.R. et al. 1994, Poster presented at IAU Symposium 165.Google Scholar
Rathnasree, N. & Ray, A. 1992, J. Astrophys. Astron. 13, 3.Google Scholar
Ray, A., Singh, P. & Sutaria, F.K. 1993, J. Astrophys. Astron. 14, 53.Google Scholar
Schmidt, B.P. et al. 1993, Nat 364, 600.Google Scholar
Schmidt, B. & Kirshner, R. 1994, E-mail circulation.Google Scholar
Shigeyama, T. & Nomoto, K. 1990, ApJ 360, 242.CrossRefGoogle Scholar
Shigeyama, T. et al. 1990, ApJ 361, L23.Google Scholar
Shigeyama, T. et al. 1994, ApJ 420, 341.Google Scholar
Swartz, D.A. & Wheeler, J.C. 1991, ApJ 379, L13.Google Scholar
Swartz, D.A., Wheeler, J.C. & Harkness, R.P. 1991, ApJ 374, 266.Google Scholar
Swartz, D.A. et al. 1993, ApJ 411, 313.Google Scholar
Thielemann, F.-K., Nomoto, K. & Hashimoto, M. 1995, ApJ (in press).Google Scholar
van den Bergh, S.A. 1991, ARA&A 29, 363.Google Scholar
Van den Heuvel, E.P.J. 1994, in Interacting Binaries , Nussbaumer, H. & Orr, A. (Eds.), Springer Verlag (Berlin), p. 263.Google Scholar
Van Dyk, S.D. et al. 1994, ApJ 432, L115.Google Scholar
Wheeler, J.C. & Filippenko, A.V. 1994, in Supernovae and Supernova Remnants , IAU Coll. 145, McCray, R. (Ed.), Cambridge University Press (Cambridge), (in press).Google Scholar
Wheeler, J.C. & Harkness, R.P. 1990, Rep. Progr. Phys. 53, 1467.Google Scholar
Wheeler, J.C. et al. 1994, ApJ 436, L135.Google Scholar
Woosley, S.E., Langer, N. & Weaver, T.A. 1993, ApJ 411, 823.Google Scholar
Woosley, S.E., Langer, N. & Weaver, T.A. 1995, ApJ (submitted).Google Scholar
Woosley, S.E., Pinto, A. & Ensman, L.M. 1988, ApJ 324, 466.Google Scholar
Woosley, S.E. et al. 1994, ApJ 429, 300.Google Scholar
Yamaoka, H., Shigeyama, T. & Nomoto, K. 1993, A&A 267, 433.Google Scholar
Zimmermann, H.-U. et al. 1994, IAU Circ. 6120.Google Scholar