Skip to main content Accessibility help
×
Home

The Origin of Commensurabilities in the Satellite Systems

  • S. F. Dermott (a1)

Extract

The distribution of orbits in the satellite systems of the major planets is definitely nonrandom as there is a marked preference for commensurability among pairs of mean motions in these systems. If this preference is not the result of a formation process then it follows that since the time of satellite formation dynamical evolution has occurred. In this paper (a full version of which is to be submitted to another journal) I show that there is a bulk of evidence in favour of the hypothesis that orbital evolution has occurred as the result of tidal dissipation in the planets. This evidence can be listed as follows:

(i) In a tidally evolved satellite system there should be a linear correlation between log (orbital radius) and log (satellite mass). The expected correlation is observed among the inner satellites of Saturn and Uranus, the slope of the log-log plots being consistent with an amplitude and frequency independent Q (the tidal dissipation function). The correlation in Saturn's system must be largely due to either a formation process or possibly an early amplitude and frequency dependent tidal process, but certainly the present satellite distribution is completely consistent with the tidal hypothesis.

(ii) If Q is amplitude- and frequency-independent then the Mimas-Tethys and Enceladus-Dione resonances are stable under the action of tidal forces. This is an important result as it indicates that the necessary tidal dissipation occurred in the solid parts of the planets. Whether or not these planets have any solid parts at present is a matter of dispute.

(iii) The tidal hypothesis can account for the formation (capture into libration) of the Mimas-Tethys and Enceladus-Dione resonances.

(iv) If it is allowed that the age of the Mimas-Tethys resonance is not small (> 108 yr) in comparison with that of the solar system and that orbital evolution since the time of satellite formation has been appreciable then it can be shown that tidal forces (with Q amplitude- and frequency-independent) can account for the present large amplitude of libration of this resonance.

(v) If tidal evolution in the satellite systems of Jupiter and Saturn has been appreciable then from the present orbits of Io and Mimas it can be deduced that Q (Jupiter) ~1.1 × 105 and Q (Saturn) ~1.2 × 105. As the masses of the two satellites differ by a factor ~2000 and the amplitudes of the tides they raise on their respective planets differ by a factor ~ 5000 this agreement in the Q-values is somewhat remarkable. But as the stability of the Mimas-Tethys and Enceladus-Dione resonances demands that Q is amplitude- and frequency-independent and as the chemical compositions and structures of Jupiter and Saturn are probably similar then one should expect the Q's of these planets to be similar and thus the result supports the tidal hypothesis.

(vi) Finally, as the values of Q are so very high it would be remarkable if tidal evolution had not taken place.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The Origin of Commensurabilities in the Satellite Systems
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      The Origin of Commensurabilities in the Satellite Systems
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      The Origin of Commensurabilities in the Satellite Systems
      Available formats
      ×

Copyright

The Origin of Commensurabilities in the Satellite Systems

  • S. F. Dermott (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed