Hostname: page-component-7c8c6479df-r7xzm Total loading time: 0 Render date: 2024-03-28T20:05:47.037Z Has data issue: false hasContentIssue false

On the Dividing Line between Cometary and Asteroidal Orbits

Published online by Cambridge University Press:  14 August 2015

L. Kresák*
Affiliation:
Astronomical Institute, Slovak Academy of Sciences, Bratislava, Czechoslovakia

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A simplified form of the Jacobi integral in the three-body system Sun-Jupiter-comet or asteroid provides an excellent method for discriminating between cometary and asteroidal orbits. Omitting the librating bodies, unambiguous separation is obtained for all known objects with reliable orbital data, i.e., about 600 comets and 1800 asteroids. The only exception is the peculiar asteroid 944 Hidalgo – which is presumably a comet. The intermediate region is occupied exclusively by bodies revolving in resonance with Jupiter, and the value of the libration argument yields a sharp secondary criterion in these cases. Besides the direct perturbational capture of long-period comets from high-eccentricity orbits into Jupiter's family, a ring of nearly circular orbits between Jupiter and Saturn is suggested as another significant source of short-period comets. For these comets the subsequent operation of nongravitational effects gives a better chance of injection into small orbits of the Apollo type and for the formation of short-period meteor streams. Some phenomena (the outbursts of P/Schwassmann-Wachmann 1, the probable recent splitting of one parent body into P/Whipple and P/Shajn-Schaldach) give reasons for speculation about the population of this region, too distant for the discovery of typical asteroids or comets, by interplanetary particles up to sizeable solid bodies.

Type
Part VI/Relationship With Meteors and Minor Planets
Copyright
Copyright © Reidel 1972 

References

Belyaev, N. A.: 1967, Astron. Zh. 44, 461.Google Scholar
Ceplecha, Z.: 1967, Smithsonian Contr. Astrophys. 11, 35.Google Scholar
Chebotarev, G. A.: 1969, Efemeridy Malykh Planet na 1970 God , Leningrad.Google Scholar
Cook, A. F., Jacchia, L. G., and McCrosky, R. E.: 1963, Smithsonian Contr. Astrophys. 7, 209.Google Scholar
Gehrels, T.: 1967, Trans. IAU 13B, 121.Google Scholar
Havnes, O.: 1969, Astrophys. Space Sci. 5, 272.Google Scholar
Jacchia, L. G., Verniani, F., and Briggs, R. E.: 1967, Smithsonian Contr. Astrophys. 10, 1.Google Scholar
Kazimirchak-Polonskaya, E. I.: 1967, Astron. Zh. 44, 439.Google Scholar
Kresák, L.: 1967, Smithsonian Contr. Astrophys. 11, 9.Google Scholar
Kresák, L.: 1968, in Kresák, L. and Millman, P. M. (eds.) ‘Physics and Dynamics of Meteors’, IAU Symp. 33, p. 217.Google Scholar
Kresák, L.: 1969, Bull. Astron. Inst. Czech. 20, 177, 231.Google Scholar
Marsden, B. G.: 1961, Astron. J. 66, 246.CrossRefGoogle Scholar
Marsden, B. G.: 1968, Astron. J. 73, 367.Google Scholar
Marsden, B. G.: 1970, Astron. J. 75, 206.Google Scholar
Öpik, E. J.: 1963, Adv. Astron. Astrophys. 2, 219.CrossRefGoogle Scholar
Schubart, J.: 1968, Astron. J. 73, 99.Google Scholar
Schweizer, F.: 1969, Astron. J. 74, 779.Google Scholar
Sinclair, A. T.: 1969, Monthly Notices Roy. Astron. Soc. 142, 289.Google Scholar
Verniani, F.: 1969, Space Sci. Rev. 10, 230.Google Scholar
Vsekhsvyatskij, S. K.: 1958, Fizicheskie Kharakteristiki Komet , Moscow.Google Scholar
Vsekhsvyatskij, S. K.: 1962, Astron. Zh. 39, 1094.Google Scholar
Vsekhsvyatskij, S. K.: 1966, Astron. Zh. 43, 1292.Google Scholar
Whipple, F. L.: 1954, Astron. J. 59, 201.CrossRefGoogle Scholar