Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-06-17T14:18:20.235Z Has data issue: false hasContentIssue false

N-Body Results on Dark Matter

Published online by Cambridge University Press:  04 August 2017

Simon D. M. White*
Affiliation:
Steward Observatory, University of Arizona, Tucson, Arizona 85721, U.S.A.

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The structure of the dominant “dark” component of the Universe may evolve primarily under the influence of gravity. A number of models for the evolution of the Universe make specific predictions for the statistical properties of density fluctuations at early times. N-body simulations can follow the nonlinear development of such fluctuations to the present day. A major difficulty arises because we cannot observe the present mass distribution directly. Recent N-body work has concentrated on models dominated by weakly interacting free elementary particles. Neutrino-dominated but otherwise conventional cosmologies pass rapidly from a smooth distribution to one dominated by lumps with masses greater than those of any known object. Cosmologies dominated by “cold dark matter” produce mass distributions which fit the observed galaxy distribution (i) if Ω = 0.1–0.2 and galaxies follow the mass distribution, or (ii) if Ω = 1, HO < 50 km/s/Mpc and galaxies form preferentially in high density regions. In the latter case, clumps form with flat rotation curves with about the amplitude and abundance expected for galaxy halos.

Type
Review Paper
Copyright
Copyright © Reidel 1987 

References

Aarseth, S. J., Gott, J. R., and Turner, E. L. 1979, Ap. J., 228, 664.CrossRefGoogle Scholar
Bardeen, J. M. 1985, Inner Space/Outer Space, (eds. Kolb, E. W. and Turner, M. S.), University of Chicago Press, in press.Google Scholar
Barnes, J. 1985, M.N.R.A.S., 215, 517.CrossRefGoogle Scholar
Bond, J. R., and Szalay, A. S. 1983, Ap. J., 174, 443.CrossRefGoogle Scholar
Bond, J. R., and Efstathiou, G. 1984, Ap. J. (Letters), 285, L45.CrossRefGoogle Scholar
Centrella, J., and Melott, A. L. 1983, Nature, 305, 196.CrossRefGoogle Scholar
Davis, M., Efstathiou, G., Frenk, C. S., and White, S. D. M. 1985, Ap. J., 292, 371.CrossRefGoogle Scholar
Doroshkevich, A. G., Khlopov, M. Yu., Sunyaev, R. A., Szalay, A. S., and Zel'dovich, Ya. B. 1980, Ann. N. Y. Acad. Sci., 375, 32.CrossRefGoogle Scholar
Efstathiou, G. 1979, M.N.R.A.S., 187, 117.CrossRefGoogle Scholar
Efstathiou, G., and Eastwood, J. W. 1981, M.N.R.A.S., 194, 503.CrossRefGoogle Scholar
Efstathiou, G., Davis, M., Frenk, C. S., and White, S. D. M. 1985, Ap. J. Suppl., 57, 241.CrossRefGoogle Scholar
Frenk, C. S., White, S. D. M., and Davis, M. 1983, Ap. J., 271, 417.CrossRefGoogle Scholar
Frenk, C. S., White, S. D. M., Efstathiou, G., and Davis, M. 1985, Nature, in press.Google Scholar
Fry, J., and Melott, A. L. 1985, Ap. J., in press.Google Scholar
Guth, A. 1985, Inner Space/Outer Space, (eds. Kolb, E. W. and Turner, M. S.), University of Chicago Press, in press.Google Scholar
Kaiser, N. 1985, Inner Space/Outer Space (eds. Kolb, E. W. and Turner, M. S.), University of Chicago Press, in press.Google Scholar
Klypin, A. A., and Shandarin, S. F. 1983, M.N.R.A.S., 204, 891.CrossRefGoogle Scholar
Peebles, P. J. E. 1965, Ap. J., 142, 1317.CrossRefGoogle Scholar
Peebles, P. J. E., and Groth, E. J. 1976, Astron. Ap., 53, 131.Google Scholar
Peebles, P. J. E. 1980, The Large-Scale Structure of the Universe, Princeton.CrossRefGoogle Scholar
Press, W. H., and Schechter, P. L. 1974, Ap. J., 187, 425.CrossRefGoogle Scholar
Rees, M. J. 1985, M.N.R.A.S., 213, 75P.CrossRefGoogle Scholar
White, S. D. M., Frenk, C. S., and Davis, M. 1983, Ap. J. (Letters), 274, L1.CrossRefGoogle Scholar
White, S. D. M., Davis, M., and Frenk, C. S. 1984, M.N.R.A.S., 209, 15p.CrossRefGoogle Scholar
Zel'dovich, Ya.B. 1970, Astron. Ap., 5, 84.Google Scholar