Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-26T04:51:41.166Z Has data issue: false hasContentIssue false

Multiwavelength Diagnostics of Pulsar Plasmas

Published online by Cambridge University Press:  25 May 2016

R. W. Romani*
Affiliation:
Dept. of Physics, Stanford University, CA 94305-4060, U.S.A.

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The phase-resolved broadband (optical to gamma-ray) spectral energy distributions of spin-powered pulsars contain important diagnostics of the emission zone plasma and its acceleration. I summarize some recent observations of young pulsars, describe models for the various spectral components, and argue that the next generation of telescopes and spacecraft will allow a true mapping of the e± plasma flow in the pulsar magnetosphere. Of course, spectral lines and breaks are more powerful tracers than the spectral energy distribution, and since we believe that synchrotron emission dominates in the near-IR to UV, features are expected that will allow even more detailed probes of the plasma physics. Most young pulsars are, however, quite faint, and new technology is needed to extract these diagnostics.

Type
Part I: Talks
Copyright
Copyright © Astronomical Society of the Pacific 2000 

References

Becker, W. 2000, these proceedings.CrossRefGoogle Scholar
Braje, T. M., & Romani, R. W. 2000, ApJ, submitted.Google Scholar
Cabrera, B., et al. 1998, Appl. Phys. Lett., 73, 735.CrossRefGoogle Scholar
Cheng, K. S., Ho, C., & Ruderman, M. 1986, ApJ, 300, 522.CrossRefGoogle Scholar
Daugherty, J. K., & Harding, A. K. 1996, ApJ, 458, 278.CrossRefGoogle Scholar
Dermer, C. D., & Sturner, S. J. 1994, ApJ, 420, L75.CrossRefGoogle Scholar
Hirotani, K. 2000, ApJ, submitted.CrossRefGoogle Scholar
Hirotani, K., & Shibata, S. 1999, MNRAS, 308, 54.CrossRefGoogle Scholar
Jacchia, A. et al. 1999, A&A, 347, 494.Google Scholar
Lyne, A. G., & Manchester, R. N. 1988, MNRAS, 234, 477.CrossRefGoogle Scholar
Lyutikov, M., Blandford, R., & Machabeli, G. 2000, these proceedings.Google Scholar
Martin, C., Halpern, J. P., & Shiminovich, D. 1998, ApJ, 494, L211.CrossRefGoogle Scholar
Middleditch, J., Pennypacker, C., & Burns, M. S. 1983, ApJ, 273, 261.CrossRefGoogle Scholar
Mignani, R., Caraveo, P. A., & Bignami, G. F. 1998, Adv. Space Res., 21 197.CrossRefGoogle Scholar
Morini, M. 1983, MNRAS, 202, 495.CrossRefGoogle Scholar
Pacini, F. 2000, these proceedings.Google Scholar
Pavlov, G. G., Welty, A., & Cordova, F. A. 1997, ApJ, 489, L75.CrossRefGoogle Scholar
Pavlov, G. G., & Zavlin, V. E. 2000, these proceedings.Google Scholar
Peacock, A. et al. 1996, Nature, 381, 135.CrossRefGoogle Scholar
Penny, A. J. 1982, MNRAS, 198, 773.CrossRefGoogle Scholar
Perryman, M. A. C., et al. 1999, A&A, 346, L30.Google Scholar
Radhakrishnan, V., & Cooke, D. J. 1969, Astrophys. Lett., 3, 225.Google Scholar
Rajagopal, M., & Romani, R. W. 1997, ApJ, 491, 296.CrossRefGoogle Scholar
Rajagopal, M., Romani, R. W., & Miller, M. C. 1997, ApJ, 479, 437.CrossRefGoogle Scholar
Romani, R. W. 1996, ApJ, 470, 469.CrossRefGoogle Scholar
Romani, R. W., et al. 1999, ApJ, 521, L153.CrossRefGoogle Scholar
Romani, R. W., & Yadigaroglu, I.-A. 1995, ApJ, 438, 314.CrossRefGoogle Scholar
Sanwal, D., Robinson, E. L., & Stiening, R. F. 1998, BAAS, 30, 1420; , in preparation.Google Scholar
Shearer, A., et al. 1998, A&A, 335, L21.Google Scholar
Thompson, D. J. 1998, in Neutron Stars and Pulsars, eds. Shibazaki, N., Kawai, N., Shibata, S., & Kifune, T. (Tokyo: Universal Academy), 273.Google Scholar
Thompson, D. J., Harding, A. K., Mattox, J. R., & Romani, R. W. 1999, unpublished.Google Scholar
Wang, F. Y.-H. 1998, in Neutron Stars and Pulsars, eds. Shibazaki, N., Kawai, N., Shibata, S., & Kifune, T. (Tokyo: Universal Academy), 351.Google Scholar
Zhang, L., & Cheng, K. S. 1997, MNRAS, 487, 370.Google Scholar
Zhu, T., & Ruderman, M. 1997, ApJ, 478, 701.CrossRefGoogle Scholar