Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-23T01:37:43.343Z Has data issue: false hasContentIssue false

Interaction of the Beams of Active Galactic Nuclei with Their Environment at High Redshifts

Published online by Cambridge University Press:  07 August 2017

Gopal-Krishna
Affiliation:
T.I.F.R. Centre, P.O. Box 1234, Bangalore 560012, India
P. J. Wiita
Affiliation:
Georgia State University, Atlanta, Ga 30303, U.S.A.

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Aiming at a physical interpretation of the cosmological evolution of radio galaxies, we extend to a high redshift our analytical model for the propagation of relativistic beams first through a hot gaseous halo of the parent elliptical galaxy and then through an even hotter, but less dense, diffuse IGM, after crossing a pressure-matched interface between the two media1–5. This model, verified by quasi-hydrodynamical numerical simulations5 has earlier explained: (1) the current mean size of classical double radio sources (D 350 kpc), (2) their steep linear-size evolution with redshift, z: D α (1+z)−3, (3). The correlation between size and radio luminosity (at fixed z): D α P0.3, (4) the number and <P> of giant radio galaxies, and (5) the break in the local radio luminosity function (LRLF), occurring near P 1024W.Hz−1 at 1 GHz (Ho = 50 kms−1 Mpc−1). Inputs to the model are observationally based average parameters of the halo1 {kTh1 keV, n(r) 10−2cm−3[1+(r/2kpc)2]−3/4}, IGM7 {kTIGM ∼18 keV (1+z)2, nIGM ∼7.10−7cm−3(1+z)3} and the beam4 {opening angle θ (radian) = 0.02 + 0.03 [29 - log P(t=0)]}. We assume a reasonable value of ∊ = 0.1 for the initial efficiency of conversion of the beam power, Lb (Watts) into (total) radio output Pt ∼1010. P(W.Hz−1). A gradual weakening of magnetic field within the expanding source raises the significance of inverse Compton losses against the Cosmic Microwave Background (CMB), leading to a reduced radio efficiency (RRE)3,2.

Type
Part 8: Relationships of Nucleus, Galaxy and Environment
Copyright
Copyright © Kluwer 1989 

References

1. Gopal-Krishna, , Wiita, P.J., MNRAS 226, 531 (1987)CrossRefGoogle Scholar
2. Wiita, P.J., Gopal-Krishna, , Proc. Georgia State Univ. Conf. (1988)Google Scholar
3. Gopal-Krishna, , Wiita, P.J., Saripalli, L., MNRAS (Submitted)Google Scholar
4. Gopal-Krishna, , Wiita, P.J., Nature 333, 49 (1988)CrossRefGoogle Scholar
5. Rosen, A., Wiita, P.J., Ap. J. 330, 16 (1988)CrossRefGoogle Scholar
6. Forman, W., Jones, C., Tucker, W., Ap. J. 293, 102 (1985)CrossRefGoogle Scholar
7. Guilbert, P.W., Fabian, A.C., MNRAS 220, 439 (1986)CrossRefGoogle Scholar
8. Giovannini, G., Feretti, L., Gregorini, L., Parma, P., A. A. 199, 73 (1988)Google Scholar
9. Stockton, A., MacKenty, J.W., Ap. J. 316, 584 (1987)CrossRefGoogle Scholar
10. Hutchings, J.B., Ap. J. 320, 122 (1987)CrossRefGoogle Scholar
11. Subrahmanya, C.R., Harnett, J.I., MNRAS 225, 297 (1987)CrossRefGoogle Scholar
12. Oort, M.J.A., , Leiden (1987)Google Scholar
13. Fanaroff, B.L., Riley, J.M., MNRAS 167, 31P (1974)CrossRefGoogle Scholar
14. Bridle, A.H., Can. J. Phys. 64, 353 (1986)CrossRefGoogle Scholar
15. Kellermann, K.I., Wall, J.V., Proc. IAU Symp. No. 124, 545 (1987)CrossRefGoogle Scholar
16. Canizares, C.R., Fabbiano, G., Trienchieri, G., Ap. J. 312, 503 (1987)CrossRefGoogle Scholar
17. Giacconi, R., Zamorani, G., Ap. J. 313, 20 (1987)CrossRefGoogle Scholar
18. Barcons, X., Fabian, A.C., MNRAS 230, 189 (1988)CrossRefGoogle Scholar
19. Hughes, J.P., Gorenstein, P., Fabricant, D., Ap. J. 329, 82 (1988)CrossRefGoogle Scholar
20. Stocke, J.T., Perrenod, S.C., Ap. J. 245, 375 (1981)CrossRefGoogle Scholar