Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-26T09:05:58.329Z Has data issue: false hasContentIssue false

Influence of Planets on Parent Stars: Angular Momentum

Published online by Cambridge University Press:  26 May 2016

Noam Soker*
Affiliation:
Department of physics, Technion—Israel Institute of Technology, Haifa 32000, Israel, and Department of Physics, Oranim email: soker@physics.technion.ac.il

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

I review some possible processes by which planets and brown dwarfs can influence the evolution of their parent evolved stars. As sunlike stars evolve on the red giant branch (RGB) and then on the asymptotic giant branch (AGB), they will interact with their close planets (if exist). The interaction starts with tidal interaction: this will lead the planets to deposit most of their angular momentum to the envelope of the giant, and then spiral-in to the envelope. (Too many papers dealing with close planets [less than about 3-6 AU] around evolved stars neglect tidal interaction, hence their results are questionable.) They may spin-up their parent stars by up to several orders of magnitude. The interaction of substellar objects with evolved star may enhance the mass loss rate, mainly in the equatorial plane. Possible outcomes are: (i) Planetary systems interacting with their parent AGB star may lead to the formation of moderate elliptical planetary nebulae. (ii) RGB stars which lose more mass turn to bluer horizontal branch (HB) stars. Therefore, planets may explain the formation of blue HB stars. This may explain the presence of many blue HB stars in many globular clusters (the planets be the second parameter), and some hot HB stars in the galaxy (sdB stars). (The 8.3 days use of the Hubble Space Telescope in search of planets in a globular clusters with no blue HB stars was a wrong move.) (iii) Most known stars with planets will not form planetary nebulae, because they will lose most of their envelope already on the RGB.

Type
Part 7: Cool Stars and their Planets
Copyright
Copyright © Astronomical Society of the Pacific 2004 

References

Allard, F., Wesemael, F., Fontaine, G., Bergeron, P., & Lamontagne, R. 1994, AJ, 107, 1565.Google Scholar
Behr, B. B., Cohen, J. G., McCarthy, J. K. 2000a, ApJ, 531, L37.Google Scholar
Behr, B. B., Djorgovski, , Cohen, J. G., McCarthy, J. K., Cote, P., Piotto, G., & Zoccali, M. 2000b, ApJ, 528, 849.Google Scholar
Berlioz-Arthaud, P. 2003, A&A, 397, 943.Google Scholar
Bono, G., & Cassisi, S. 1999, in The Third Stromlo Symposium: The Galactic Halo, ASP Conf, SEr. Vol. 666, eds. Gibson, B. K., Axelrod, T. S. & Putman, M. E. (astro-ph/9811175).Google Scholar
Catelan, M. 2000, ApJ, 531, 826.Google Scholar
Catelan, M., Borissova, J., Sweigart, A. V., & Spassova, N. 1998, ApJ, 494, 265.Google Scholar
Chu, Y.-H., Dunne, B. C., Gruendl, R. A., & Brandner, W. 2001, ApJ, 546, L61.Google Scholar
D'Cruz, N. L., Dorman, B., Rood, R. T., & O'Connell, R. W. 1996, ApJ, 466, 359.Google Scholar
D'Cruz, N. L., O'Connell, R. W., Rood, R. T., Whitney, J. H., Dorman, B., Landsman, W. B., Hill, R. S., Stecher, T. P., & Bohlin, R. C. 2000, ApJ 530, 352 (astro-ph/9909371).Google Scholar
de Boer, K. S. 1999, in Harmonizing Cosmic Distance Scales in a Post-HIPPARCOS Era, ASP Conference Series 167, Eds. Egret, D. and Heck, A., p. 129 (astro-ph/9811077).Google Scholar
Dorman, B., Rood, R. T., & O'Connell, R. W. 1993, ApJ, 419, 596.Google Scholar
Eggleton, P. P. 1978 Science Today 13, 22.Google Scholar
Ferdman, R. D. et al. 2003 (astro-ph/0304470).Google Scholar
Ferraro, F. R., Paltrinieri, B., Fusi Pecci, F., Cacciari, C., Dorman, B. & Rood, R. T. 1997, ApJ, 484, L145.CrossRefGoogle Scholar
Fusi Pecci, F. & Bellazzini, M. 1997, in The Third Conference on Faint Blue Stars, ed. Philip, A. G. D., Liebert, J., Saffer, R., and Hayes, D. S., Published by L. Davis Press, p. 255 (astro-ph/9701026).Google Scholar
Gilliland, R. L., et al. 2000, ApJ, 545, L47.Google Scholar
Green, E. M., Liebert, J., Sarajedini, A., & Peterson, R. C. 1998, AAS, 192.6713.Google Scholar
Harpaz, A., & Soker, N. 1994, MNRAS, 270, 734.Google Scholar
Harris, W. E. 1996, AJ, 112, 1487.Google Scholar
Hjellming, M. S., & Taam, R. E. 1991, ApJ, 370, 709.Google Scholar
Kilkenny, D., Koen, C., O'Donoghue, D., Stobie, R. S. 1997, MNRAS, 285, 640.Google Scholar
Kilkenny, D., O'Donoghue, D., Koen, C., Lynas-Gray, A. E., & Van Wyk, F. 1998, MNRAS, 296, 329.Google Scholar
Koen, C., Kilkenny, D., O'Donoghue, D., Van Wyk, F., & Stobie, R. S. 1997, MNRAS, 285, 645.Google Scholar
Koen, C., O'Donoghue, D., Kilkenny, D., Lynas-Gray, A. E., Marang, F., & Van Wyk, F. 1998, MNRAS, 296, 317.Google Scholar
Livio, M. 1982, A&A, 112, 190.Google Scholar
Livio, M., & Soker, N. 1984, MNRAS, 208, 763.Google Scholar
Livio, M., & Soker, N. 2002, ApJ, 571, L161.Google Scholar
Maxted, P. F. L., Moran, C. K. J., Marsh, T. R., & Gatti, A. A. 2000, MNRAS, 311, 877 (astro-ph/9910511).Google Scholar
Moehler, S., Landsman, W. B., & Dorman, B. 2000, A&A, 361, 937.Google Scholar
Moehler, S., Sweigart, A. V., & Catelan, M., 1999, A&A, 351, 519.Google Scholar
O'Donoghue, D., Koen, C., Lynas-Gray, A. E., Kilkenny, D., & Van Wyk, F. 1998, MNRAS, 296, 306.Google Scholar
Quillen, A. C., & Trilling, D. E. 1998, ApJ, 508, 707.Google Scholar
Rasio, F. A., Tout, C. A., Lubow, S. H., & Livio, M. 1996, ApJ, 470, 1187.Google Scholar
Retter, A., & Marom, A. 2003, MNRAS, in press (astro-ph/0309341).Google Scholar
Rich, R. M., Sosin, C., Djorgovski, S. G., Piotto, G., King, I. R., Renzini, A., Phinney, E. S., Dorman, B., Liebert, J., & Meylan, G. 1997, ApJ, 484, L25.Google Scholar
Rudnitskij, G. M. 2002, PASA, 19, 499.Google Scholar
Rybicki, K. R., & Denis, C. 2001, Icaros, 151, 130.Google Scholar
Siess, L., & Livio, M. 1999a, MNRAS, 304, 925.Google Scholar
Siess, L., & Livio, M. 1999b, MNRAS, 308, 1133.Google Scholar
Sigurdsson, S., Richer, H. B., Hansen, B. M., Stairs, I. H., & Thorsett, S. E. 2003, Sci., 301, 193.Google Scholar
Soker, N. 1992a, ApJ, 386, 190.Google Scholar
Soker, N. 1992b, ApJ, 399, 185.Google Scholar
Soker, N. 1993, ApJ, 417, 347.Google Scholar
Soker, N. 1996a, ApJ, 460, L53.Google Scholar
Soker, N. 1996b, ApJ, 468, 774.Google Scholar
Soker, N. 1997, ApJS, 112, 487.Google Scholar
Soker, N. 1998a, AJ, 116, 1308.Google Scholar
Soker, N. 1998b, ApJ, 496, 833.Google Scholar
Soker, N. 1998c, MNRAS, 299, 1242.Google Scholar
Soker, N. 1999, MNRAS, 306, 806.Google Scholar
Soker, N. 2001a, ApJ, 558, 157.Google Scholar
Soker, N. 2001b, MNRAS, 324, 699.Google Scholar
Soker, N. 2002a, A&A, 386, 885.Google Scholar
Soker, N. 2002b, MNRAS, 330, 481.Google Scholar
Soker, N. 2002c, MNRAS, 336, 1229.Google Scholar
Soker, N., & Clayton, G. C. 1999, MNRAS, 307, 993.Google Scholar
Soker, N., & Hadar, R. 2001, MNRAS, 324, 213.Google Scholar
Soker, N., & Harapz, A. 2000, MNRAS, 317, 861.Google Scholar
Soker, N., & Harapz, A. 2003, MNRAS, 343, 456.Google Scholar
Stark, M. A., & Wade, R. A. 2003, AJ, 126, 1455.Google Scholar
Struck, C., Cohanim, B. E., & Willson, L. A. 2002, ApJ, 572, L83.Google Scholar
Struck, C., Cohanim, B. E., & Willson, L. A. 2004, MNRAS, in press (astro-ph/0309359).Google Scholar
Struck-Marcell, 1988, ApJ, 330, 986.Google Scholar
Sweigart, A. V., & Catelan, M. 1998, ApJ, 501, L63.Google Scholar
Vink, J. S. 2003, in “Extreme Horizontal Branch Stars and Related Objects”, Astrophysics and Space Science, (Kluwer), ed. Maxted, P. in press (astro-ph/0309011).Google Scholar
Whitney, J. H., Rood, R. T., O'Connell, R. W., D'Cruz, N. L., Dorman, B., Landsman, W. B., Bohlin, R. C., Roberts, M. S., Smith, A. M., & Stecher, T. P. 1998, ApJ, 495, 284.Google Scholar