Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-27T02:17:08.898Z Has data issue: false hasContentIssue false

The Hydrogen Clouds in the Galactic Halo

Published online by Cambridge University Press:  26 May 2016

Felix J. Lockman*
Affiliation:
National Radio Astronomy Observatory, Green Bank WV, USA

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

New 21cm observations with the Green Bank Telescope show that a significant fraction of the HI in the inner Galaxy's halo ~ 1 kpc from the midplane exists in the form of discrete clouds. Some look very much like a Spitzer (1968) “standard” diffuse cloud but with their HI in two phases. They mark the transition between the neutral disk and the highly ionized halo. The dominant motion of the clouds is Galactic rotation, but some have random velocities of as much as 50 km s−1. They are part of the Galaxy and are not related to high-velocity clouds, yet their origin is obscure.

Type
Part 2. Origin
Copyright
Copyright © Astronomical Society of the Pacific 2004 

References

Blaauw, A., Gum, C.S., Pawsey, J.L., & Westerhout, G. 1960, MNRAS, 121, 123.CrossRefGoogle Scholar
Clemens, D.P. 1985, ApJ, 295, 422.Google Scholar
Cox, D.P. 2000, Rev. Mex. A. A., 9, 14.Google Scholar
de Avillez, M.A., & Berry, D.L. 2001, MNRAS, 328, 708.CrossRefGoogle Scholar
Dickey, J.M., & Lockman, F.J. 1990, ARAA, 28, 215.CrossRefGoogle Scholar
Field, G.B., Goldsmith, D.W., & Habing, H.J. 1969, ApJ, 155, L149.Google Scholar
Heiles, C. 1984, ApJS, 55, 585.CrossRefGoogle Scholar
Houck, J.C., & Bregman, J.N. 1990, ApJ, 506, 521.Google Scholar
Kalberla, P.M.W. et al. 1998, A&A, 332, L61.Google Scholar
Konz, C., Brims, C., & Birk, G.T. 2002, A&A, 391, 713.Google Scholar
Kulkarni, S.R., & Fich, M. 1985, ApJ, 289, 792.CrossRefGoogle Scholar
Kulkarni, S. & Heiles, C.E. 1988, in Galactic and Extragalactic Radio Astronomy, ed. Verschuur, G.L. & Kellermann, K.I., Springer, p. 95.Google Scholar
Liszt, H.S. 1983, ApJ, 275, 163.Google Scholar
Lockman, F.J. 1984, ApJ, 283, 90.Google Scholar
Lockman, F.J. 2002, ApJ, 580, L47.Google Scholar
Lockman, F.J., & Gehman, C.S. 1991, ApJ, 382, 182.Google Scholar
Lockman, F. J. & Stil, J. R. 2004, in press (astro-ph 0310762).Google Scholar
Norman, C. & Ikeuchi, S. 1989, ApJ, 345, 372.Google Scholar
Oort, J. 1961, in The Distribution and Motion of Interstellar Matter in Galaxies, ed. Woltjer, L., (Benjamin: New York), p. 71.Google Scholar
Putman, M.E., et al. 2003, ApJ, 586, 170.Google Scholar
Radhakrishnan, V., & Srinivasan, G. 1980, J. Astr. Ap., 1, 47.Google Scholar
Reynolds, R.J. 1997, in Physics of Galactic Halos, ed. Lesch, H., Dettmar, R-J., Mebold, U. & Schlickeiser, R., Akademie Verlag: Berlin, p. 57.Google Scholar
Sancisi, R., Fraternali, F., Oosterloo, T., & van Moorsel, G. 2001, in Galaxy Disks and Disk Galaxies , ASP Conf. Ser. 230, p. 111.Google Scholar
Savage, B.D. 1995, in The Physics of the Interstellar Medium and Intergalactic Medium , ASP Conf. Ser. 80, p. 233.Google Scholar
Sembach, K.R. et al. 2003, ApJS, 146, 165.CrossRefGoogle Scholar
Shapiro, P.R., & Field, G.B. 1976, ApJ, 205, 762.Google Scholar
Spitzer, L. 1968, Diffuse Matter in Space, (Wiley: Interscience)Google Scholar
Wakker, B.P. et al. 1999, Nature, 402, 388.CrossRefGoogle Scholar
Wolfire, M.G., et al. 1995, ApJ, 453, 673.Google Scholar