Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-07-05T16:13:49.800Z Has data issue: false hasContentIssue false

How Precise are Spectroscopic Abundance Determinations Today?

Published online by Cambridge University Press:  04 August 2017

Giusa Cayrel de Strobel*
Affiliation:
Paris-Meudon Observatory

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

It is shown that a great breakthrough has occurred in the accuracy of spectroscopic abundance analyses with the introduction of solid state light detectors, such as Reticons and CCDs. Because of uncontrolled systematic errors in photographic photometry, abundances derived from high dispersion photographic spectra can hardly be known with an accuracy better than 0.3 dex. This is well exemplified by the recent finding that the observational scatter is large even in the equivalent widths of the Utrecht Solar Atlas. A fortiori these uncertainties are present in the [Fe/H] stellar abundance Catalogue, chiefly based in its present form on photographic material. For the future the calibration of the [Fe/H] Catalogue with spectra taken with Reticon detectors is recommended. A signal/noise ratio of 300 to 500 is more important than an improvement in spectral resolution with a low signal/noise ratio. Then, the remaining uncertainties in the abundances will mostly reflect inaccuracies in atmospheric parameter determinations of the models and in the assumptions underlying model computations.

Type
1. Review Papers
Copyright
Copyright © Reidel 1985 

References

Beckers, J.M., Bridges, C.A., Gilliam, L.B., 1976, A High Resolution Spectral Atlas of the Solar Irradiance from 380 to 700 Nanometers, Air Force Geophysics Laboratory, Tr 76–0126.Google Scholar
Bonsack, W. K. 1983, Publ. Astron. Soc. Pacific, 95, 93.Google Scholar
Branch, D., Lambert, D. L. and Tomkin, J., 1980, Astrophys. J., 241, L83.Google Scholar
Cayrel, R. and Traving, G., 1960, Z. für Astrophys., 50, 239.Google Scholar
Cayrel, R. and Cayrel de Strobel, G., 1966, Ann. Rev. Astron. Astrophys., 4, 1.Google Scholar
Cayrel, R., Cayrel de Strobel, G., Campbell, B., Mein, N., Mein, P. and Dumont, S., 1983, Astron. Astrophys. 123, 89.Google Scholar
Cayrel, R., Cayrel de Strobel, G. and Campbell, B. 1984, in preparation.Google Scholar
Cayrel de Strobel, G. 1980, ESO Workshop on Methods of Abundance Determinations for Stars. Nissen, P. E. and Ed. Kjär, K., (ESO Report Sept. 1980).Google Scholar
Cayrel de Strobel, G. and Bentolila, C. 1983, Astron. Astrophys, 119, 1.Google Scholar
Cayrel de Strobel, G., Bentolila, C., Hauck, B. and Duquennoy, A., A Catalogue of [Fe/H] Determinations, 1984 Edition, Astron. Astrophys. Supp. Series, in press.Google Scholar
Duncan, D. K. 1981, Astrophys. J., 248, 651.Google Scholar
Griffin, R. F. 1968, A Photometric Atlas of the Spectrum of Arcturus λλ3600-8825 Å, (Cambridge, The Philosophical Society).Google Scholar
Griffin, R. and Griffin, R., 1979, A Photometric Atlas of the Spectrum of Procyon λλ3140-7470. (Institute of Astronomy, Cambridge).Google Scholar
Gustafsson, B. 1978, unpublished.Google Scholar
May, M., Richter, J. and Wichelmann, J. 1974, Astron. Astrophys. Suppl., 18, 405.Google Scholar
Moore, C. E., Minnaert, M.G.J. and Houtgast, J. 1966, Second Revision of Rowland's Preliminary Table of Solar Spectrum Wavelengths. (Utrecht Observatory).Google Scholar
Morel, M., Bentolila, C., Cayrel, G. and Hauck, B., 1976, in IAU Symposium 72, Abundance Effects in Classification, Eds. Hauck, B. and Keenan, P. C., (Reidel: Dordrecht) p.223.CrossRefGoogle Scholar
Perrin, M. N., Hejlesen, P. M., Cayrel de Strobel, G. and Cayrel, R. 1977, Astron. Astrophys. 54, 779.Google Scholar
Spite, F. and Spite, M. 1982, Astron. Astrophys., 115, 357.Google Scholar
Trimble, V. and Bell, R. A. 1981, Quart. J. Roy. Astr. Soc., 22, 361.Google Scholar
Vidal, C. R., Cooper, J. and Smith, E. W. 1971, J. Quant. Spectrosc. Radiat. Transfer 11, 263.CrossRefGoogle Scholar