Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-06-07T19:24:36.085Z Has data issue: false hasContentIssue false

Genetic Differences Between Humans and Great Apes –Implications for the Evolution of Humans

Published online by Cambridge University Press:  19 September 2017

Ajit Varki*
Affiliation:
Departments of Medicine and Cellular & Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla CA, U.S.A.

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

At the level of individual protein sequences, humans are 97–100% identical to the great apes, our closest evolutionary relatives. The evolution of humans (and of human intelligence) from a common ancestor with the chimpanzee and bonobo involved many steps, influenced by interactions amongst factors of genetic, developmental, ecological, microbial, climatic, behavioral, cultural and social origin. The genetic factors can be approached by direct comparisons of human and great ape genomes, genes and gene products, and by elucidating biochemical and biological consequences of any differences found. We have discovered multiple genetic and biochemical differences between humans and great apes, particularly with respect to a family of cell surface molecules called sialic acids, as well as in the metabolism of thyroid hormones. The hormone differences have potential consequences for human brain development. The differences in sialic acid biology have multiple implications for the human condition, ranging from susceptibility or resistance to microbial pathogens, effects on endogenous receptors in the immune system, and potential effects on placental signaling, expression of oncofetal antigens in cancers, consequences of dietary intake of animal foods, and development of the mammalian brain.

Type
Origins and Evolution of Life
Copyright
Copyright © Astronomical Society of the Pacific 2004 

References

Angata, T., Varki, N. M., & Varki, A. 2001, J. Biol. Chem., 276, 40282 Google Scholar
Angata, T., & Varki, A. 2002, Chem. Rev., 102, 439 Google Scholar
Brinkman-Van der Linden, E. C. M., Sjoberg, E. R., Juneja, L. R., Crocker, P. R., Varki, N., & Varki, A. 2000, J. Biol. Chem., 275, 8633 CrossRefGoogle Scholar
Chou, H. H., Takematsu, H., Diaz, S., Iber, J., Nickerson, E., Wright, K. L., Muchmore, E. A., Nelson, D. L., Warren, S. T., & Varki, A. 1998, Proc. Natl. Acad. Sci.USA, 95, 11751 Google Scholar
Chou, H.H., Hayakawa, T., Diaz, S., Krings, M., Indriati, E., Leakey, M., Paabo, S., Satta, Y., Takahata, N., & Varki, A. 2002, Proc. Natl. Acad. Sci. USA, 99, 11736 Google Scholar
Cyranoski, D. 2002, Nature, 418, 910 Google Scholar
Darwin, C. 1871, The descent of man, and selection in relation to sex (New York: D. Appleton and company)Google Scholar
Dobzhansky, T. 1973, Amer. Biol. Teacher, 35, 125 Google Scholar
Gagneux, P., Amess, B., Diaz, S., Moore, S., Patel, T., Dillmann, W., Parekh, R., & Varki, A. 2001, Am. J. Phys. Anthropol., 115, 99 Google Scholar
Gagneux, P., & Varki, A. 2001, Mol. Phylogenet. Evol., 18, 2 Google Scholar
Goodman, M. 1999, Am. J. Hum. Genet., 64, 31 Google Scholar
Hayakawa, T., Satta, Y., Gagneux, P., Varki, A., & Takahata, N. 2001, Proc. Natl. Acad. Sci. USA, 98, 11399 Google Scholar
Huxley, T.H. 1863. Evidence as to Man's place in Nature (London: Williams and Norgate)Google Scholar
Irie, A., Koyama, S., Kozutsumi, Y., Kawasaki, T., & Suzuki, A. 1998, J. Biol. Chem., 273, 15866 CrossRefGoogle Scholar
Johnson, M. E., Viggiano, L., Bailey, J. A., Abdul-Rauf, M., Goodwin, G., Rocchi, M., & Eichler, E. E. 2001, Nature, 413, 514 CrossRefGoogle Scholar
Kawano, T., Koyama, S., Takematsu, H., Kozutsumi, Y., Kawasaki, H., Kawashima, S., Kawasaki, T., & Suzuki, A. 1995, J. Biol. Chem., 270, 16458 Google Scholar
McConkey, E. H. 1997, Cytogenet. Cell Genet., 76, 189 Google Scholar
McConkey, E. H., & Goodman, M. 1997, Trends. Genet., 13, 350 CrossRefGoogle Scholar
McConkey, E. H., Fouts, R., Goodman, M., Nelson, D., Penny, D., Ruvolo, M., Sikela, J., Stewart, C. B., Varki, A., & Wise, S. 2000, Mol. Phylogenet. Evol., 15, 1 Google Scholar
McConkey, E. H., & Varki, A. 2000, Science, 289, 1295 Google Scholar
Muchmore, E. A., Diaz, S., & Varki, A. 1998, Am. J. Phys. Anthropol., 107, 187 Google Scholar
Page, M. J., Amess, B., Rohlff, C., Stubberfield, C., & Parekh, R. 1999, DDT, 4, 55 CrossRefGoogle Scholar
Rademacher, T. W., Parekh, R. B., & Dwek, R. A. 1988, Annu. Rev. Biochem., 57, 785 Google Scholar
Ruvolo, M. 1997, Mol. Biol. Evol., 14, 248 Google Scholar
Satta, Y., Klein, J., & Takahata, N. 2000, Mol. Phylogenet. Evol., 14, 259 Google Scholar
Schauer, R. 1982, Sialic Acids: Chemistry, Metabolism and Function, Cell Biology Monographs, Volume 10 (New York: Springer-Verlag)Google Scholar
Sibley, C. G., & Ahlquist, J. E. 1987, J. Mol. Evol., 26, 99 Google Scholar
Varki, A. 1999, in Essentials of Glycobiology, ed. Varki, A., Esko, J.D., Cummings, R., Freeze, H. H., Hart, G. W., & Marth, J. (Plainview, N.Y.: Cold Spring Harbor Laboratory Press), 1 Google Scholar
Varki, A. 2000, Genome. Res., 10, 1065 CrossRefGoogle Scholar
Varki, A. 2002, Yearbook. Phys. Anthropol., 44, 54 Google Scholar
Yunis, J. J., & Prakash, O. 1982, Science, 215, 1525 CrossRefGoogle Scholar