Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-26T12:30:35.773Z Has data issue: false hasContentIssue false

From Infall to Rotation around Young Stars: The Origin of Protoplanetary Disks

Published online by Cambridge University Press:  23 September 2016

Michiel R. Hogerheijde*
Affiliation:
Steward Observatory, The University of Arizona, 933 N. Cherry Ave, Tucson, AZ 85721-0065, USA; and Sterrewacht Leiden, Postbus 9513, 2300 RA, Leiden, The Netherlands

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The origin of disks surrounding young stars has direct implications for our understanding of the formation of planetary systems. In the interstellar clouds from which star form, angular momentum is regulated by magnetic fields, preventing the spin up of contracting cores. When ∼ 0.03 pc-sized dense cores decouple from the magnetic field and collapse dynamically, ∼ 10−3 km s−1 pc of specific angular momentum is locked into the system. A viscous accretion disk is one of two possible mechanisms available for the necessary redistribution of angular momentum; the other one is the formation of a multiple stellar system. Recent observational results involving high-angular resolution observations are reviewed: the presence of disks deep inside collapsing envelopes; an accretion shock surrounding a disk; the velocity field in collapsing and slowly rotating envelopes; a possible transitional object, characterized as a large, contracting disk; and the velocity field in disks around T Tauri stars. Observational facilities becoming available over the next several years promise to offer significant progress in the study of the origin of protoplanetary disks.

Type
Part 8: Disks
Copyright
Copyright © Astronomical Society of the Pacific 2004 

References

Basu, S. 1997, ApJ, 485, 240 CrossRefGoogle Scholar
Basu, S. 1998, ApJ, 509, 229 CrossRefGoogle Scholar
Beckwith, S. V. W. & Sargent, A. I. 1996, Nature, 383, 139 CrossRefGoogle Scholar
Belloche, A., André, P., Despois, D., & Blinder, S. 2002, A&A, 393, 927 Google Scholar
Blitz, L. & Williams, J. P. 1999, in The Origin of Stars and Planetary Systems, ed. Lada, C. J., Kylafis, N. D. (Dordrecht: Kluwer), 3 CrossRefGoogle Scholar
Bodenheimer, P., Yorke, H. W., Rozyczka, M., & Tohline, J. E. 1990, ApJ, 355, 651 Google Scholar
Boogert, A. C. A., Hogerheijde, M. R., & Blake, G. A. 2002, ApJ, 568, 761 Google Scholar
Burkert, A. & Bodenheimer, P. 2000, ApJ, 543, 822 Google Scholar
Cesaroni, R., Felli, M., Testi, L., Walmsley, C. M., & Olmi, L. 1997, A&A, 325, 725 Google Scholar
De Buizer, J. M. 2003, MNRAS, 341, 277 Google Scholar
Evans, N. J. 1999, ARA&A, 37, 311 Google Scholar
Fuller, G. A. & Myers, P. C. 1992, ApJ, 384, 523 CrossRefGoogle Scholar
Goodman, A. A., Benson, P. J., Fuller, G. A., & Myers, P. C. 1993, ApJ, 406, 528 Google Scholar
Goodman, A. A., Barranco, J. A., Wilner, D. J., & Heyer, M. H. 1998, ApJ, 504, 223 Google Scholar
Gregersen, E. M., Evans, N. J., Zhou, S., & Choi, M. 1997, ApJ, 484, 256 Google Scholar
Hartmann, L., Ballesteros-Paredes, J., & Bergin, E. A. 2001, ApJ, 562, 852 Google Scholar
Harvey, D. W. A., Wilner, D. J., Myers, P. C., Tafalla, M., & Mardones, D. 2003, ApJ, 583, 809 Google Scholar
Heacox, W. D. 1998, AJ, 115, 325 Google Scholar
Hogerheijde, M. R. & Sandell, G. 2000, ApJ, 534, 880 CrossRefGoogle Scholar
Hogerheijde, M. R. 2001, ApJ, 553, 618 Google Scholar
Königl, A. 1987, ApJ, 320, 726 Google Scholar
Krasnopolsky, R. & Königl, A. 2002, ApJ, 580, 987 CrossRefGoogle Scholar
Larson, R. B. 1981, MNRAS, 194, 809 Google Scholar
Lissauer, J. J. 1993, ARA&A, 31, 129 Google Scholar
Looney, L. W., Mundy, L. G., & Welch, W. J. 2000, ApJ, 529, 477 Google Scholar
Looney, L. W., Mundy, L. G., & Welch, W. J. 2003, ApJ, 592, 255 Google Scholar
Mardones, D., Myers, P. C., Tafalla, M., Wilner, D. J., Bachiller, R., & Garay, G. 1997, ApJ, 489, 719 Google Scholar
McKee, C. F. 1999, in The Origin of Stars and Planetary Systems, ed. Lada, C. J., Kylafis, N. D. (Dordrecht: Kluwer), 29 Google Scholar
Muzerolle, J., Hartmann, L., & Calvet, N. 1998, AJ, 116, 2965 Google Scholar
Myers, P. C. 1999, in The Origin of Stars and Planetary Systems, ed. Lada, C. J., Kylafis, N. D. (Dordrecht: Kluwer), 67 Google Scholar
Myers, P. C. & Gammie, C. F. 1999, ApJ, 522, L141 Google Scholar
Nakamura, F. 2000, ApJ, 543, 291 Google Scholar
Norris, R. P. et al. 1998, ApJ, 508, 275 Google Scholar
Ohashi, N., Hayashi, M., Ho, P. T. P., Momose, M., Tamura, M., Hirano, N., & Sargent, A. I. 1997, ApJ, 488, 317 Google Scholar
Ossenkopf, V. & Mac Low, M.-M. 2002, A&A, 390, 307 Google Scholar
Ostriker, E. C., Stone, J. M., & Gammie, C. F. 2001, ApJ, 546, 980 CrossRefGoogle Scholar
Padgett, D. L., Brandner, W., Stapelfeldt, K. R., Strom, S. E., Terebey, S., & Koerner, D. 1999, AJ, 117, 1490 Google Scholar
Ruden, S. P. 1999, in The Origin of Stars and Planetary Systems, ed. Lada, C. J., Kylafis, N. D. (Dordrecht: Kluwer), 643 CrossRefGoogle Scholar
Sandell, G., Wright, M., & Forster, J. R. 2003, ApJ, 590, L45 Google Scholar
Shu, F. H. 1977, ApJ, 214, 488 Google Scholar
Simon, M., Dutrey, A., & Guilloteau, S. 2000, ApJ, 545, 1034 Google Scholar
Stahler, S. W., Korycansky, D. G., Brothers, M. J., & Touma, J. 1994, ApJ, 431, 341 Google Scholar
Terebey, S., Shu, F. H., & Cassen, P. 1984, ApJ, 286, 529 Google Scholar
Velusamy, T., Langer, W. D., & Goldsmith, P. F. 2002, ApJ, 565, L43 Google Scholar
Yorke, H. W., Bodenheimer, P., & Laughlin, G. 1993, ApJ, 411, 274 Google Scholar
Yorke, H. W., Bodenheimer, P., & Laughlin, G. 1995, ApJ, 443, 199 Google Scholar
Zhang, Q., Hunter, T. R., & Sridharan, T. K. 1998, ApJ, 505, L151 Google Scholar