Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-26T05:36:27.928Z Has data issue: false hasContentIssue false

Formation of Outer Solar System Bodies: Comets and Planetesimals

Published online by Cambridge University Press:  19 July 2016

Mark E. Bailey*
Affiliation:
School of Computing and Mathematical Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, U.K.

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Observations of massive, extended discs around both pre-main-sequence and main-sequence stellar systems indicate that protoplanetary discs larger than the observed planetary system are a common phenomenon, while the existence of large comets suggests that the total cometary mass is much greater than previous estimates. Both observations suggest that theories of the origin of the solar system are best approached from the perspective provided by theories of star formation, in particular that the protoplanetary disc may have extended up to ~103 AU. A model with a surface density distribution similar to a minimum-mass solar nebula, but extending further in radius, is derived by considering the gravitational collapse of a uniform, slowly rotating molecular cloud. The boundary of the planetary system is determined not by lack of mass, as in previous ‘mass-limited’ models (i.e. those with a sharp decrease in surface density Σ beyond the radius of the observed planetary system), but instead by the increasing collision time between the comets or planetesimals initially formed by gravitational instability beyond the planetary zone. Bodies formed beyond ~50 AU have sizes on the order of 102 km and represent a collisionally unevolved population; they are composed of relatively small, unaltered clumps of interstellar dust and ices with individual sizes estimated to range up to ~10 m. By contrast, bodies formed closer in, for example in the Uranus-Neptune zone, consist of larger agglomerations of dust and ices with individual sizes ranging up to ~1 km. Planetesimals formed by gravitational instability at smaller heliocentric distances r are typically much smaller than those formed further out, the masses mp being proportional to Σ3r6, but subsequent collisional aggregation in the planetary region is expected to produce bodies with sizes ranging up to 102 km or more. In both cases the first-formed solid objects may be identified with observed cometary nuclei; some accumulate to produce the outer planets, but the majority are ejected, either to interstellar space or into the Oort cloud. Observed comets represent a dynamically well-mixed group from various sources; they are expected to comprise a heterogeneous mix of both pristine and relatively altered material and to have a broad mass distribution ranging up to the size of the largest planetesimals.

Type
Origin and Evolution
Copyright
Copyright © Kluwer 1994 

References

Arnold, J.R.: 1977. “Condensation and agglomeration of grains.” In Comets, Asteroids, Meteorites: Interrelations, Evolution and Origins (Delsemme, A.H., Ed.), IAU Coll. No. 39, 519524, University of Toledo Press.Google Scholar
Artymowicz, P., Burrows, C. and Paresce, F.: 1989. “The structure of the Beta Pictoris circumstellar disk from combined IRAS and coronographic observations.” Astrophys. J., 337, 494513.CrossRefGoogle Scholar
Aumann, H.H.: 1985. “IRAS observations of matter around nearby stars.” Publ. Astron. Soc. Pac., 97, 885891.Google Scholar
Aumann, H.H., Gillett, F.C., Beichman, C.A., De Jong, T., Houck, J.R., Low, F.J., Neugebauer, G., Walker, R.G. and Wesselius, P.R.: 1984. “Discovery of a shell around Alpha Lyrae.” Astrophys. J. Lett., 278, L23L27.Google Scholar
Backman, D.A. and Paresce, F.: 1993. “Main-sequence stars with circumstellar solid material: the Vega phenomenon.” In Protostars and Planets III (Levy, E.H., Lunine, J.I., Eds.), 12531304, University of Arizona Press, Tucson.Google Scholar
Baggaley, W.J., Taylor, A.D. and Steel, D.I.: 1993. “The influx of meteoroids with hyperbolic heliocentric orbits.” In Meteoroids and their Parent Bodies (Štohl, J., Williams, I. P., Eds.), 5356. Slovak Acad. Sci., Bratislava, Slovakia.Google Scholar
Bailey, M.E.: 1987a. “Giant grains around protostars.” Quart. J. Roy. Astron. Soc., 28, 242247.Google Scholar
Bailey, M.E.: 1987b. “The formation of comets in wind-driven shells around protostars.” Icarus, 69, 7082.CrossRefGoogle Scholar
Bailey, M.E.: 1988. “Comets in star-forming regions.” In Dust in the Universe (Bailey, M.E., Williams, D.A., Eds.), 113120, Cambridge University Press.Google Scholar
Bailey, M.E.: 1990. “Cometary masses.” In Baryonic Dark Matter (Lynden-Bell, D., Gilmore, G., Eds.), 735. Kluwer, Dordrecht.CrossRefGoogle Scholar
Bailey, M.E.: 1991a. “Comets and molecular clouds: the sink and the source.” In Molecular Clouds (James, R.A., Millar, T.J., Eds.), 273289, Cambridge University Press.Google Scholar
Bailey, M.E.: 1991b. “Comet craters versus asteroid craters.” Adv. Space Res., 11, No. 6, (6)43(6)60.Google Scholar
Bailey, M.E., Clube, S.V.M. and Napier, W.M.: 1990. “The Origin of Comets.” Pergamon Press, Oxford.Google Scholar
Bailey, M.E., Chambers, J.E. and Hahn, G.: 1992. “Detection of comet nuclei at large heliocentric distances.” Mon. Not. Roy. Astron. Soc., 254, 581588.Google Scholar
Bailey, M.E., Clube, S.V.M., Hahn, G., Napier, W.M. and Valsecchi, G.B.: 1994. “Hazards due to giant comets: climate and short-term catastrophism.” In Hazards due to Comets and Asteroids (Gehrels, T., Ed.), University of Arizona press, in press.Google Scholar
Bailey, M.E. and Stagg, C.R.: 1988. “Cratering constraints on the inner Oort cloud: steady-state models.” Mon. Not. Roy. Astron. Soc., 235, 132.Google Scholar
Bar-Nun, A. and Kleinfeld, I.: 1989. “On the temperature and gas composition in the region of comet formation.” Icarus, 80, 243253.CrossRefGoogle Scholar
Beckwith, S.V.W. and Sargent, A.I.: 1993. “The occurrence and properties of disks around young stars.” In Protostars and Planets III (Levy, E.H., Lunine, J.I., Eds.), 521541, University of Arizona Press, Tucson.Google Scholar
Beckwith, S.V.W., Sargent, A.I., Chini, R.S. and Güsten, R.: 1990. “A survey for circumstellar disks around young stellar objects.” Astron. J., 99, 924945.Google Scholar
Bhatt, H.C.: 1986. “Large dust grains in the dark cloud B5.” Mon. Not. Roy. Astron. Soc., 222, 383391.Google Scholar
Biermann, L. and Michel, K.W.: 1978. “The origin of cometary nuclei in the presolar nebula.” Moon and Planets, 18, 447464.Google Scholar
Binney, J. and Tremaine, S.: 1987. “Galactic Dynamics.” Princeton University Press, Princeton.Google Scholar
Bode, M.F.: 1988. “Obervations and modelling of circumstellar dust.” In Dust in the Universe (Bailey, M.E., Williams, D.A., Eds.), 73102, Cambridge University Press.Google Scholar
Brooks, A.M.: 1990. “Aggregation of grains in the protosolar nebula.” In Asteroids Comets Meteors III (Lagerkvist, C.-I., Rickman, H., Lindblad, B.A., Lindgren, M., Eds.), 2528, Uppsala Univ. Reprocentralen.Google Scholar
Brooks, A.M.: 1992. “Random Aggregation and the Formation of Comets.” Thesis, University of Manchester.Google Scholar
Brophy, T.G.: 1991. “Does debris from the formation of other planetary systems impact Earth?” Icarus, 94, 250254.Google Scholar
Burke, J.R. and Silk, J.: 1976. “The dynamical interaction of a newly formed protostar with infalling matter: the origin of interstellar grains.” Astrophys. J., 210, 341364.Google Scholar
Cameron, A.G.W.: 1962. “The formation of the sun and planets.” Icarus, 1, 1369.Google Scholar
Cameron, A.G.W.: 1978. “Physics of the primitive solar accretion disk.” Moon and Planets, 18, 540.Google Scholar
Cameron, A.G.W.: 1985. “Formation and evolution of the primitive solar nebula.” In Protostars and Planets II (Black, D.C., Matthews, M.S., Eds.), 10731099, University of Arizona Press, Tucson.Google Scholar
Cameron, A.G.W.: 1988. “Origin of the solar system.” Annu. Rev. Astron. Astrophys., 26, 441472.Google Scholar
Cameron, A.G.W. and Pine, M.R.: 1973. “Numerical models of the primitive solar nebula.” Icarus, 18, 377406.Google Scholar
Clayton, D.D.: 1982. “Cosmic chemical memory: a new astronomy.” Quart. J. Roy. Astron. Soc., 23, 174212.Google Scholar
Clayton, D.D. and Liffman, K.: 1988. “Monte-Carlo histories of refractory interstellar dust.” In Dust in the Universe (Bailey, M.E., Williams, D.A., Eds.), 343354, Cambridge University Press.Google Scholar
Clayton, D.D., Scowen, P. and Liffman, K.: 1989. “Age structure of refractory interstellar dust and isotopic consequences.” Astrophys. J., 346, 531538.Google Scholar
Donn, B.D.: 1990. “The formation and structure of fluffy cometary nuclei from random accumulation of grains.” Astron. Astrophys., 235, 441446.Google Scholar
Donn, B.D. and Hughes, D.W.: 1986. “A fractal model of a cometary nucleus formed by random aggregation.” In 20th ESLAB Symposium on the Exploration of Halley's Comet (Battrick, B., Rolfe, E.J., Reinhard, R., Eds.), ESA SP-250 Vol. III, 523524, ESA Publications, Noordwijk.Google Scholar
Donnison, J.R.: 1986. “The distribution of cometary magnitudes.” Astron. Astrophys., 167, 359363.Google Scholar
Duncan, M. and Quinn, T.: 1993a. “The long-term dynamical evolution of the solar system.” Ann. Rev. Astron. Astrophys., 31, 265295.Google Scholar
Duncan, M. and Quinn, T.: 1993b. “The long-term dynamical evolution and stability of the solar system.” In Protostars and Planets III (Levy, E.H., Lunine, J.I., Eds.), 13711394, University of Arizona Press, Tucson.Google Scholar
Duncan, M., Quinn, T. and Tremaine, S.: 1987. “The formation and extent of the solar system comet cloud.” Astron. J., 94, 13301338.CrossRefGoogle Scholar
Elmegreen, B.G.: 1981. “Grain formation behind shocks and the origin of isotopically anomalous meteoritic inclusions.” Astrophys. J., 251, 820833.Google Scholar
Elsässer, H., Birkle, K., Eiroa, C. and Lenzen, R.: 1982. “On the infrared sources 1 and 2 in NGC 7538.” Astron. Astrophys., 108, 274278.Google Scholar
Engel, S., Lunine, J.I. and Lewis, J.S.: 1990. “Solar nebula origin for volatile gases in Halley's comet.” Icarus, 85, 380393.Google Scholar
Fegley, B. and Prinn, R.G.: 1989. “Solar nebula chemistry: implications for volatiles in the solar system.” In The Formation and Evolution of Planetary Systems (Weaver, H.A., Danly, L., Eds.), 171211, Cambridge University Press.Google Scholar
Fernández, J.A. and Ip, W.-H.: 1991. “Structure and evolutionary aspects of cometary orbits.” In Comets in the Post-Halley Era (Newburn, R. L. Jr., Neugebauer, M., Rahe, J., Eds.) IAU Coll. No. 116, Vol. 1, 487535, Kluwer, Dordrecht.Google Scholar
Fogg, M.J.: 1990. “Interstellar planets.” Comments Astrophys., 14, 357375.Google Scholar
Gehrz, R.D.: 1989. “Sources of stardust in the Galaxy.” In Interstellar Dust (Allamandola, L.J., Tielens, A.G.G.M., Eds.), IAU Symp. No. 135, 445453. Kluwer, Dordrecht.Google Scholar
Goldreich, P. and Ward, W.R.: 1973. “The formation of planetesimals.” Astrophys. J., 183, 10511061.Google Scholar
Greenberg, J.M.: 1988. “The interstellar dust model of comets: post Halley.” In Dust in the Universe (Bailey, M.E., Williams, D.A., Eds.), 121143, Cambridge University Press.Google Scholar
Greenberg, J.M.: 1989. “The core-mantle model of interstellar grains and the cosmic dust connection.” In Interstellar Dust (Allamandola, L.J., Tielens, A.G.G.M., Eds.), IAU Symp. No. 135, 345355. Kluwer, Dordrecht.Google Scholar
Greenberg, J.M. and Hage, J.I.: 1990. “From interstellar dust to comets: a unification of observational constraints.” Astrophys. J., 361, 260274.Google Scholar
Greenberg, R.: 1985. “The origin of comets among the accreting outer planets.” In Dynamics of Comets: Their Origin and Evolution (Carusi, A., Valsecchi, G. B.), IAU Coll. No. 83, 310, Reidel, Dordrecht.Google Scholar
Greenberg, R.: 1989. “Planetary accretion.” In Origin and Evolution of Planetary and Satellite Atmospheres (Atreya, S.K., Pollack, J.B., Matthews, M.S., Eds.), 137164, University of Arizona Press, Tucson.Google Scholar
Greenberg, R., Weidenschilling, S.J., Chapman, C.R. and Davis, D.R.: 1984. “From icy planetesimals to outer planets and comets.” Icarus, 59, 87113.Google Scholar
Grün, E., Zook, H.A., Baguhl, M., Balogh, A., Bame, S.J., Fechtig, H., Forsyth, R., Hanner, M.S., Horanyi, M., Kissel, J., Lindblad, B.-A., Linkert, D., Linkert, G., Mann, I., McDonnell, J.A.M., Morfill, G.E., Phillips, J.L., Polanskey, C., Schwehm, G., Siddique, N., Staubach, P., Svestka, J. and Taylor, A.: 1993. “Discovery of jovian dust streams and interstellar grains by the Ulysses spacecraft.” Nature, 362, 428430.Google Scholar
Hills, J.G.: 1981. “Comet showers and the steady-state infall of comets from the Oort cloud.” Astron. J., 86, 17301740.CrossRefGoogle Scholar
Hills, J.G.: 1982. “The formation of comets by radiation pressure in the outer protosun.” Astron. J., 87, 906910.Google Scholar
Horedt, G.P.: 1979. “Cosmogony of the solar system.” Moon and Planets, 21, 63121.Google Scholar
Hughes, D.W.: 1987. “The history of Halley's comet.” Phil. Trans. R. Soc. Lond., A323, 349367.Google Scholar
Jenkins, E.B.: 1989. “Insights on dust grain formation and destruction provided by gas-phase element abundances.” In Interstellar Dust (Allamandola, L.J., Tielens, A.G.G.M., Eds.), IAU Symp. No. 135, 2336. Kluwer, Dordrecht.Google Scholar
Jewitt, D.C. and Meech, K.J.: 1988. “Optical properties of cometary nuclei and a preliminary comparison with asteroids.” Astrophys. J., 328, 974986.Google Scholar
Jura, M.: 1980. “Origin of large interstellar grains toward ρ Ophiuchi.” Astrophys. J., 235, 6365.Google Scholar
Kessel'man, V.S.: 1978. “The effect of turbulence on the coagulation of interstellar dust.” Sov. Astron., 22, 276278.Google Scholar
Kessel'man, V.S.: 1979. “Influence of turbulence on the growth of solid particles in contracting interstellar clouds.” Sov. Astron., 23, 475479.Google Scholar
Knacke, R.F.: 1989. “Comet dust: connections with interstellar dust.” In Interstellar Dust (Allamandola, L.J., Tielens, A.G.G.M., Eds.), IAU Symp. No. 135, 415428. Kluwer, Dordrecht.Google Scholar
Larson, R.B. and Starrfield, S.: 1971. “On the formation of massive stars and the upper limit of stellar masses.” Astron. Astrophys., 13, 190197.Google Scholar
Lefèvre, J.: 1974. “Coagulation of interstellar grains in the Rho Ophiuchi dark cloud.” Astron. Astrophys., 37, 1719.Google Scholar
Liffman, K.: 1990. “The effect of catastrophic collisional fragmentation and diffuse medium accretion on a computational interstellar dust system.” Astrophys. J., 355, 518535.Google Scholar
Lin, D.N.C. and Papaloizou, J.: 1985. “On the dynamical evolution of the solar system.” In Protostars and Planets II (Black, D.C., Matthews, M.S., Eds.), 9811072, University of Arizona Press, Tucson.Google Scholar
Lissauer, J.: 1993. “Planet formation.” Annu. Rev. Astron. Astrophys., 31, 129174.Google Scholar
Lissauer, J. and Stewart, G.R.: 1993. “Growth of planets from planetesimals.” In Protostars and Planets III (Levy, E.H., Lunine, J.I., Eds.), 10611088, University of Arizona Press, Tucson.Google Scholar
Lunine, J.I.: 1989. “Primitive bodies: molecular abundances in Comet Halley as probes of cometary formation environments.” In The Formation and Evolution of Planetary Systems (Weaver, H.A., Danly, L., Eds.), 213242, Cambridge University Press.Google Scholar
Marochnik, L.S. and Mukhin, L.M.: 1988. “The Halley missions: does the solar system contain copious unseen mass?” Sov. Astron. Lett., 14, 241242.Google Scholar
Marochnik, L.S., Mukhin, L.M. and Sagdeev, R.Z.: 1988. “Estimates of mass and angular momentum in the Oort cloud.” Science, 242, 547550.CrossRefGoogle Scholar
Marochnik, L.S., Mukhin, L.M. and Sagdeev, R.Z.: 1989. “The distribution of mass and angular momentum in the solar system.” Sov. Sci. Rev. E. Astrophys. Space Phys., 8, 155.Google Scholar
Mathis, J.S., Rumpl, W. and Nordseick, K.H.: 1977. “The size distribution of interstellar grains.” Astrophys. J., 217, 425433.Google Scholar
Mathis, J.S. and Wallenhorst, S.G.: 1981. “The size distribution of interstellar particles. III. Peculiar extinctions and normal infrared extinction.” Astrophys. J., 244, 483492.Google Scholar
McKee, C.F.: 1989. “Dust destruction in the interstellar medium.” In Interstellar Dust (Allamandola, L.J., Tielens, A.G.G.M., Eds.), IAU Symp. No. 135, 431443. Kluwer, Dordrecht.Google Scholar
McKee, C.F., Zweibel, E.G., Goodman, A.G. and Heiles, C.: 1993. “Magnetic fields in star-forming regions: theory.” In Protostars and Planets III (Levy, E.H., Lunine, J.I., Eds.), 327366. University of Arizona Press, Tucson.Google Scholar
Meakin, P. and Donn, B.: 1988. “Aerodynamic properties of fractal grains: implications for the primordial solar nebula.” Astrophys. J. Lett., 329, L39L41.Google Scholar
Meakin, P., Vicsek, T., and Family, F.: 1985. “Dynamic cluster-size distribution in cluster-cluster aggregation: effects of cluster diffusivity.” Phys. Rev. B, 31, 564569.Google Scholar
Mendis, D.A. and Marconi, L.: 1986. “A note on the total mass of comets in the solar system.” Earth, Moon, Planets, 36, 187191.Google Scholar
Mestel, L.: 1963. “On the Galactic law of rotation.” Mon. Not. Roy. Astron. Soc., 126, 553575.Google Scholar
Mestel, L. and Ray, T.P.: 1985. “Disc-like magneto-gravitational equilibria.” Mon. Not. Roy. Astron. Soc., 212, 275302.Google Scholar
Mestel, L. and Spitzer, L.: 1956. “Star formation in magnetic dust clouds.” Mon. Not. Roy. Astron. Soc., 116, 503514.Google Scholar
Mizuno, H.: 1989. “Grain growth in the turbulent accretion disk solar nebula.” Icarus, 80, 189201.Google Scholar
Montmerle, T., Feigelson, E.D., Bouvier, J. and André, P.: 1993. “Magnetic fields, activity and circumstellar material around young stellar objects.” In Protostars and Planets III (Levy, E.H., Lunine, J.I., Eds.), 689717, University of Arizona Press, Tucson.Google Scholar
Morfill, G.E. and Völk, H.J.: 1984. “Transport of dust and vapor and chemical fractionation in the early protosolar cloud.” Astrophys. J., 287, 371395.Google Scholar
Mumma, M.J., Weissman, P.R. and Stern, S.A.: 1993. “Comets and the origin of the solar system: reading the Rosetta stone.” In Protostars and Planets III (Levy, E.H., Lunine, J.I., Eds.), 11771252, University of Arizona Press, Tucson.Google Scholar
Nakagawa, Y., Hayashi, C. Nakazawa, K.: 1983. “Accumulation of planetesimals in the solar nebula.” Icarus 54, 361376.Google Scholar
Nakano, T.: 1987. “Formation of planets around stars of various masses – I. Formulation and a star of one solar mass.” Mon. Not. Roy. Astron. Soc., 224, 107130.CrossRefGoogle Scholar
Napier, W.M.: 1990. “Interstellar planetesimals.” In Dusty Objects in the Universe (Bussoletti, E., Vittone, A.A., Eds.), 103110. Kluwer, Dordrecht.Google Scholar
Öpik, E.J.: 1973. “Comets and the formation of planets.” Astrophys. Space Sci., 21, 307398.Google Scholar
Piirola, V., Scaltriti, F. and Coyne, G.V.: 1992. “Circumstellar disks deduced from subarcsecond polarization observations of two young stars.” Nature, 359, 399401.Google Scholar
Pringle, J.E.: 1989. “The Egg Nebula: a protostellar disc remanant around an evolved star.” Mon. Not. Roy. Astron. Soc., 238, 37P40P.Google Scholar
Prinn, R.G.: 1993 “Chemistry and evolution of gaseous circumstellar disks.” In Protostars and Planets III (Levy, E.H., Lunine, J.I., Eds.), 10051028, University of Arizona Press, Tucson.Google Scholar
Rouan, D. and Léger, A.: 1984. “Large grains in Orion are indicated by IR polarization and flux data.” Astron. Astrophys., 132, L1L4.Google Scholar
Safronov, V.S.: 1969. “Evolution of the Protoplanetary Cloud and Formation of the Earth.” Israel programme for scientific translations, Jerusalem 1972.Google Scholar
Safronov, V.S. and Ruzmaikina, T.V.: 1985. “Formation of the solar nebula and the planets.” In Protostars and Planets II (Black, D.C., Matthews, M.S., Eds.), 959980, University of Arizona Press, Tucson.Google Scholar
Sandford, S.A.: 1989. “Interstellar dust in collected interplanetary dust particles.” In Interstellar Dust (Allamandola, L.J., Tielens, A.G.G.M., Eds.), IAU Symp. No. 135, 403413. Kluwer, Dordrecht.Google Scholar
Sargent, A.I.: 1989. “Molecular disks and their link to planetary systems.” In The Formation and Evolution of Planetary Systems (Weaver, H.A., Danly, L., Eds.), 111129, Cambridge University Press.Google Scholar
Seab, C.G.: 1988. “Grain destruction and growth.” In Dust in the Universe (Bailey, M.E., Williams, D.A., Eds.), 303326, Cambridge University Press.Google Scholar
Seab, C.G. and Shull, J.M.: 1986. “Shock processing of interstellar grains.” In Interrelations among Circumstellar, Interstellar, and Interplanetary Dust (Nuth, J.A. III, Stencel, R. E., Eds.), NASA CP-2403, 3753, NASA, Washington DC.Google Scholar
Sicardy, B.: 1994. “Small bodies around other stars.” This book.Google Scholar
Strom, K.M., Strom, S.E., Edwards, S., Cabrit, S. and Skrutskie, M.F.: 1989a. “Circumstellar material associated with solar-type pre-main-sequence stars: a possible constraint on the timescale for planet building.” Astron. J., 97, 14511470.Google Scholar
Strom, S.E., Edwards, S. and Strom, K.M.: 1989b. “Constraints on the properties and environment of primitive stellar nebulae from the astrophysical record provided by young stellar objects.” In The Formation and Evolution of Planetary Systems (Weaver, H.A., Danly, L., Eds.), 91109, Cambridge University Press.Google Scholar
Strom, S.E., Edwards, S. and Skrutski, M.F.: 1993. “Evolutionary timescales for circumstellar disks associated with intermediate- and solar-type stars.” In Protostars and Planets III (Levy, E.H., Lunine, J.I., Eds.), 837866, University of Arizona Press, Tucson.Google Scholar
Taylor, A.D., Baggaley, W.J., Bennett, R.G.T. and Steel, D.J.: 1994. “Radar measurements of very high velocity meteors with AMOR.” Planetary and Space Science, in press.Google Scholar
Telesco, C.M., Becklin, E.E., Wolstencroft, R.D. and Decher, R.: 1988. “Resolution of the circumstellar disk of β Pictoris at 10 and 20 μm.” Nature, 335, 5153.Google Scholar
Tielens, A.G.G.M.: 1989. “Dust in dense clouds.” In Interstellar Dust (Allamandola, L.J., Tielens, A.G.G.M., Eds.), IAU Symp. No. 135, 239262. Kluwer, Dordrecht.Google Scholar
Tielens, A.G.G.M.: 1991. “Characteristics of interstellar and circumstellar dust.” In Origin and Evolution of Interplanetary Dust (Levasseur-Regourd, A.C., Hasegawa, H., Eds.), IAU Coll. No. 126, 405412, Kluwer, Dordrecht.Google Scholar
Tremaine, S.: 1990. “Dark matter in the solar system.” In Baryonic Dark Matter (Lynden-Bell, D., Gilmore, G., Eds.), 3765. Kluwer, Dordrecht.Google Scholar
Tscharnuter, W.M. and Boss, A.P.: 1993. “Formation of the protosolar nebula.” In Protostars and Planets III (Levy, E.H., Lunine, J.I., Eds.), 921938, University of Arizona Press, Tucson.Google Scholar
Van Dishoeck, E.F., Blake, G.A., Draine, B.T. and Lunine, J.I.: 1993. “The chemical evolution of protostellar and protoplanetary matter.” In Protostars and Planets III (Levy, E.H., Lunine, J.I., Eds.), 163241, University of Arizona Press, Tucson.Google Scholar
Völk, H.J., Jones, F.C., Morfill, G.E. and Röser, S.: 1980. “Collisions between grains in a turbulent gas.” Astron. Astrophys., 85, 316325.Google Scholar
Weidenschilling, S.J.: 1977. “The distribution of mass in the planetary system and solar nebula.” Astrophys. Space Sci., 51, 151158.Google Scholar
Weidenschilling, S.J.: 1987. “Accumulation of solid bodies in the solar nebula.” Gerlands. Beitr. Geophysik, Leipzig, 96, 2133.Google Scholar
Weidenschilling, S.J., Donn, B. and Meakin, P.: 1989. “The physics of planetesimal formation.” In The Formation and Evolution of Planetary Systems (Weaver, H.A., Danly, L., Eds.), 131150, Cambridge University Press.Google Scholar
Weidenschilling, S.J. and Cuzzi, J.N.: 1993. “Growth of planets from planetesimals.” In Protostars and Planets III (Levy, E.H., Lunine, J.I., Eds.), 10311060, University of Arizona Press, Tucson.Google Scholar
Weintraub, D.A., Sandell, G. and Duncan, W.D.: 1989. “Submillimeter measurements of T Tauri and FU Orionis stars.” Astrophys. J. Lett., 340, L69L72.Google Scholar
Weissman, P.R.: 1990. “The cometary impactor flux at the Earth.” In Global Catastrophes in Earth History (Sharpton, V.L., Ward, P.D., Eds.), Geol. Soc. Amer. Spec. Pap. 247, 171180.Google Scholar
Wetherill, G.W.: 1980. “Formation of the terrestrial planets.” Ann. Rev. Astron. Astrophys., 18, 77113.Google Scholar
Wetherill, G.W.: 1989. “The formation of the solar system: consensus, alternatives, and missing factors.” In The Formation and Evolution of Planetary Systems (Weaver, H.A., Danly, L., Eds.), 130, Cambridge University Press.Google Scholar
Wetherill, G.W.: 1990. “Formation of the Earth.” Annu. Rev. Earth Planet. Sci., 18, 205256.Google Scholar
Williams, I.P.: 1974. “Planetary formation.” In Exploration of the Planetary System (Woszczyk, A., Iwaniszewska, C., Eds.), IAU Symp. No. 65, 312, Reidel, Dordrecht.Google Scholar
Woolfson, M.M.: 1990. “The solar system — its origin and evolution.” Quart. J. Roy. Astron. Soc., 34, 120.Google Scholar
Yamamoto, T.: 1991. “Chemical theories on the origin of comets.” In Comets in the Post-Halley Era (Newburn, R. L. Jr., Neugebauer, M., Rahe, J., Eds.) IAU Coll. No. 116, Vol. 1, 361376, Kluwer, Dordrecht.Google Scholar
Yamamoto, T. and Kozasa, T.: 1988. “The cometary nucleus as an aggregate of planetesimals.” Icarus, 75, 540551.Google Scholar
Yamamoto, T., Mizutani, H. and Kadota, A.: 1993. “Are 1992 QB1 and 1993 FW remnant planetesimals?” Preprint, submitted to Nature.Google Scholar