Hostname: page-component-7c8c6479df-ph5wq Total loading time: 0 Render date: 2024-03-19T08:19:14.427Z Has data issue: false hasContentIssue false

The Formation and Evolution of Young Star Clusters in the Antennae

Published online by Cambridge University Press:  03 August 2017

Bradley C. Whitmore*
Affiliation:
Space Telescope Science Institute, 3700 San Martin Dr., Baltimore, MD, 21218, USA

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Five populations of young, massive, compact star clusters have been identified in the “Antennae galaxies”, the nearest and youngest example of a prototypical merging galaxy. The brightest of these clusters have all the attributes expected of young globular clusters, hence allowing us to study the formation and evolution of globular clusters in the local universe. Comparisons between the different populations and a variety of multi-wavelength observations are providing new insights into the formation of the clusters. For example, the very red clusters originally identified by Whitmore and Schweizer (1995) appear to be the youngest population, just emerging from their dust cocoon. The cluster luminosity functions for a wide variety of galaxies (i.e., mergers, starbursts, barred galaxies, spirals) appear to follow a “universal” power law, with index ≈ −2. The primary difference between the different galaxies is the normalization, with roughly a tenfold increase in the number of clusters in merging and starbursting galaxies. Hence, the fact that the brightest clusters are in mergers may be largely a statistical result. Simulations are now showing how the initial power law distribution for the clusters will evolve toward the peaked distribution found for old globular clusters, via a combination of processes including two-body evaporation, disk shocking, and stellar mass loss.

Type
Part 3. Super Star Clusters and Associations
Copyright
Copyright © Astronomical Society of the Pacific 2002 

References

Barmby, P., Huchra, J. P. 2000, ApJ, 531, 29 CrossRefGoogle Scholar
Elmegreen, B. G. & Efremov, Y. N. 1997, ApJ, 480, 235 Google Scholar
Fall, S. M. & Zhang, Q. 2001, ApJ, submitted Google Scholar
Figer, D. F., Kim, S. S., Morris, M., Serabyn, E., Rich, R. M., & McLean, I. S. 1999, ApJ, 525, 750 Google Scholar
Jog, C. & Solomon, 1992, ApJ, 387, 152 CrossRefGoogle Scholar
Harris, W. E. & Pudritz, R. E. 1994, ApJ, 429, 177 CrossRefGoogle Scholar
Holtzman, J. A. et al. (the WFPC team) 1992, AJ, 103, 691 Google Scholar
Kumai, Y., Hashi, Y., & Fujimoto, M. 1993, ApJ, 404, 144 CrossRefGoogle Scholar
Larsen, S. S. & Richtler, T. 1999, A&A, 345, 59 Google Scholar
Lutz, D. 1991, A&A, 245, 31 Google Scholar
Massey, P. & Hunter, D. 1998, ApJ, 493, 180 Google Scholar
Meurer, G. R., Heckman, T. M., Leitherer, C., Kinney, A., Robert, C., & Garnett, D. R. 1995, AJ, 110, 2665 Google Scholar
Miller, B. W., Whitmore, B. C., Schweizer, F., & Fall, S. M. 1997, AJ, 114, 2381 Google Scholar
Phelps, R. L., Janes, K. A. & Montgomery, K. A. 1994, AJ, 107, 1079 Google Scholar
Schweizer, F. 1982, ApJ, 252, 455 Google Scholar
Schweizer, F., Miller, B., Whitmore, B. C., & Fall, S. M. 1996, AJ, 112, 1839 Google Scholar
Toomre, A. 1977 The Evolution of Galaxies and Stellar Populations, ed. Tinsley, B. M. & Larson, R. B. (Yale, New Haven) 401 Google Scholar
Vigroux, L. et al. 1996, A&A, 315, L93 Google Scholar
Whitmore, B. C. 2001, astro-ph/0012546 Google Scholar
Whitmore, B. C., & Schweizer, F. 1995, AJ, 109, 960 Google Scholar
Whitmore, B. C., Schweizer, F., Leitherer, C., Borne, K., & Robert, C. 1993, AJ, 106, 1354 Google Scholar
Whitmore, B. C., Zhang, Q., Leitherer, C., Fall, S. M., Schweizer, F. & Miller, B. W. 1999, AJ, 118, 1551 Google Scholar
Wilson, C. D., Scoville, N., Madden, S. C., and Charmandaris, V. 2000, ApJ, 542, 120 Google Scholar
Zhang, Q. & Fall, S. M. 1999, ApJ, 527, L81 Google Scholar
Zhang, Q., Fall, M., Whitmore, B. C 2001, ApJ, in press Google Scholar