Hostname: page-component-77c89778f8-rkxrd Total loading time: 0 Render date: 2024-07-18T06:39:29.906Z Has data issue: false hasContentIssue false

Evolutionary Models of Interstellar Chemistry

Published online by Cambridge University Press:  04 August 2017

Sheo S. Prasad*
Affiliation:
Jet Propulsion Laboratory, California Institute of Technology, 4800 Dak Grove Drive Pasadena, California 91109 USA

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The goal of evolutionary models of interstellar chemistry is to understand how interstellar clouds came to be the way they are, how they will change with time, and to place them in an evolutionary sequence with other celestial objects such as stars. To this end, we present an improved Mark II version of our earlier model of chemistry in dynamically evolving clouds. The Mark II model suggests that the conventional elemental C/O ratio less than one can explain the observed abundances of CI and the non-detection of O2 in dense clouds. Coupled chemical-dynamical models seem to have the potential to generate many observable discriminators of the evolutionary tracks. This is exciting, because, in general, purely dynamical models do not yield enough verifiable discriminators of the predicted tracks.

Type
Interstellar Medium
Copyright
Copyright © Reidel 1987 

References

1. Black, J. H. 1987, in these proceedings.Google Scholar
2. Herbst, E. 1987, in these proceedings.Google Scholar
3. Gerola, H., and Glassgold, A. E. 1978, Ap. J. Suppl., 37, 1.CrossRefGoogle Scholar
4. Suzuki, H., Miki, S., Sata, K., Kiguchi, M., and Nakagawa, Y. 1976, Progr. Theoret. Phys. (Japan), 56, 1111.Google Scholar
5. Kiguchi, M., Suzuki, H., Sata, K., Miki, S., Tominatsu, A., and Nakagawa, Y. 1974, Pub. Astr. Soc. Japan, 26, 499.Google Scholar
6. Tarafdar, S. P., Prasad, S. S., Huntress, W. T. Jr., Villere, K. R., and Black, D. C. 1985, Ap. J., 289, 220. (TPHVB) Google Scholar
7. Prasad, S. S. and Huntress, W. T. Jr. 1980, Ap. J. Suppl., 43, 1.Google Scholar
8. de Jong, T., Dalgarno, A., and Boland, W. 1980, Astr. Ap, 91, 68.Google Scholar
9. Woolfson, M. M. 1979, Phil. Transc. Roy. Soc. London, A291, 219.Google Scholar
10. Larson, R. B. 1973, Ann. Rev. Astr. Ap., 11, 219.Google Scholar
11. McNally, D. 1971, Rept. Progr. Phys., 34, 71.Google Scholar
12. Bodenheimer, P. 1968, Ap. J., 153, 683.Google Scholar
13. Prasad, S. S. 1985, ‘Interstellar Clouds: From a Dynamical Perspective on their Chemistry.’ in Molecular Astrophysics: State of the Art and Future Directions, ed. Dierksen, G. H. F., Huebner, W. F., and Lanhoff, P. W. (Dordrecht: Reidel)Google Scholar
14. Beichman, et al. 1986. In press with Ap. J. Google Scholar
15. Phillips, T. G., and Huggins, P. J. 1981, Ap. J., 251, 533.Google Scholar
16. Frerking, M. A., Keene, J., Blake, G. A., Phillips, T. G., and Beichman, C. A. 1985, Ap. J., submitted.Google Scholar
17. Keene, J., Blake, G. A., Phillips, T. G., Huggins, P. J., and Beichman, C.A. 1985, Ap. J., 299, 967.Google Scholar
18. Lizst, H. S., and Vanden Bout, P. A. 1985, Ap. J., 291, 178.Google Scholar
19. Lizst, H. S. 1985, Ap. J., 298, 281.Google Scholar
20. Huggins, P. J., Carlson, W. J., and Kinney, A. L. 1984, Astr. Ap., 133, 357.Google Scholar
21. Langer, W. D., Graedel, T. E., Frerking, M. A., and Armentrout, P. B. 1984, Ap. J., 277, 581 Google Scholar
22. Herbst, E., and Leung, C. M. 1985. ‘Synthesis of Comlex Molecules in Dense Interstellar Clouds via Gas Phase Chemistry: Model Update and Sensitivity Analysis’. Preprint.Google Scholar
23. Tarafdar, S. P., Prasad, S. S., and Huntress, W. T. Jr. 1983, Ap. J. 267, 156.Google Scholar
24. Thaddeus, P., Gottlieb, C. A., Hjalmarson, A., Johansson, L. E. B., Irvine, W. M., Friberg, P., and Linke, R. A. 1985, Ap. J. (Letters) 294, L49.Google Scholar
25. Prasad, S. S., and Tarafdar, S. P. 1983, Ap. J., 267, 603.Google Scholar
26. Leung, C. M., Herbst, E., and Huebner, W. F. 1984, Ap. J. Suppl., 56, 231.Google Scholar
27. Smith, P. L., Yoshino, K., Griesinger, H. E., and Black, J. H. 1981, Ap. J., 250, 166.Google Scholar
28. Black, J. H., and Smith, P. L. 1984, Ap. J., 277, 562.Google Scholar
29. Irvine, W. M., Schloerb, P., Hjalmarson, A., and Herbst, E. 1985, ‘The Chemical State of Molecular Clouds’, in Protostars and Planets II. ed. Black, D. C. and Matthews, M. (Tucson: University of Arizona Press)Google Scholar
30. Herbst, E. 1984, ‘An Update of and Suggested Increase in Calculated Radiative Association Rate Coefficients’. Preprint.Google Scholar
31. Smith, D., and Adams, N. G. 1984, Ap. J. (Letters), 284, L13.Google Scholar
32. Zuckerman, B., and Palmer, P. 1974, Ann. ev. Astr. Ap., 12, 279.Google Scholar
33. Smith, L. F., Biermann, P., and Mezger, P. G. 1978, Astr. Ap., 66, 65.Google Scholar
34. Matthews, H. E., and Irvine, W. M. 1985, Ap. J., 298, L61.Google Scholar
35. Smith, D., Adams, N. G., and Alge, E. 1984, Chem. Phys. Lett., 105, 317.Google Scholar
36. Black, D. C., and Scott, E. H. 1982, Ap. J., 263, 697.Google Scholar
37. Glassgold, A. E., Huggins, P. J. and Langer, W. D. 1985, Ap. J., 290, 615.Google Scholar