Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-07-04T16:04:05.660Z Has data issue: false hasContentIssue false

The Evolution and Luminosity Function of Quasars

Published online by Cambridge University Press:  25 May 2016

Vahé Petrosian*
Affiliation:
Center for Space Science and Astrophysics, Varian 302c, Stanford University, Stanford, CA, 94305-4060

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

I report results from analysis of data from several quasar samples (Durham/AAT, LBQS, HBQS and EQS) on the density and the luminosity evolution of quasars. We have used new statistical methods whereby we combine these different samples with varying selection criteria and multiple truncations. With these methods the luminosity evolution can be found through an investigation of the correlation of the bivariate distribution of luminosities and redshifts. Of the two most commonly used models for luminosity evolution, L = ekt(z) and L = (1 + z)k', we find that the second form, with k' = 2.58 (one σ range [2.14,2.91]), gives a better description of the data at all luminosities. Using this form of luminosity evolution we determine a global luminosity function and the evolution of the co-moving density for the two classes of cosmological models. We find a gradual increase of the co-moving density up to z ˜ 2, at which point the density peaks and begins to decrease rapidly. This is in agreement with results from high redshift surveys and in disagreement with the pure luminosity evolution (i.e. constant co-moving density) model. We find that the local luminosity function exhibits the usual double power law behavior. The luminosity density is found to increase rapidly at low redshift and to reach a peak at around z ≍ 2. This result is compared with those from high redshift surveys and with the evolution of the star formation rate.

Type
II. Observational Properties of AGN and Related Objects
Copyright
Copyright © Astronomical Society of the Pacific 1999 

References

Boyle, B. J., Fong, R., Shanks, T., & Peterson, B. A. 1990, M.N.R.A.S., 243, 1.Google Scholar
Boyle, B. J. 1992, in Texas/ESO-CERN Symp. on Rel. Astro., Cosmology and Particle Physics , eds. Barrow, J. D., Mestel, L. & Thomas, P., Ann. N. Y. Acad. of Sci., 647, 14.CrossRefGoogle Scholar
Burbidge, G. R., & O'Dell, S.L. 1973, Ap.J., 183, 759.Google Scholar
Caditz, D., & Petrosian, V. 1990, Ap.J., 357, 326.CrossRefGoogle Scholar
Caditz, D., Petrosian, V., & Wandel, A. 1991, Ap. J. (Letters), 372, L63.CrossRefGoogle Scholar
Cavaliere, A., & Padovani, P. 1988, Ap.J. (Letters), 333, L33.CrossRefGoogle Scholar
Cavaliere, A., & Vittorini, V. 1998, to appear in The Young Universe , Eds. D'Odorico, S., Fontana, A. & Giallongo, E. ASP Conf. Series 1998, v2; astro-ph/9802320.Google Scholar
Cristiani, S., La Franca, F., & Andreani, P., et al. 1995, A. & A. Suppl., 112, 347.Google Scholar
Efron, B., & Petrosian, V. 1992, Ap.J., 399, 345.Google Scholar
Efron, B., & Petrosian, V. 1998, JASA, in press; astro-ph/9808334.Google Scholar
Goldschmidt, P., Miller, L., La France, F., & Cristiani, S. 1992, M.N.R.A.S., 256, 65.CrossRefGoogle Scholar
Hatziminaoglou, E., Van Waerbeke, L. & Mathez, G. 1998,Google Scholar
Hewett, P. C., Foltz, C. B., & Chaffee, F. H. 1995, A.J., 109, 1498.Google Scholar
Hughes, D. H. et al. 1998, Nature, 394, 241 CrossRefGoogle Scholar
La Franca, F., & Cristiani, S. 1996, invited talk in Wide Field Spectroscopy (20-24 May 1996, Athens), Eds. Kontizas, M. et al.; astro-ph/9610017.Google Scholar
Lynden-Bell, D. 1971, M.N.R.A.S., 155, 95.Google Scholar
Lynds, R. C., & Petrosian, V. 1972, Ap.J., 175, 591.CrossRefGoogle Scholar
Lynds, R. C., & Wills, D. 1972, Ap.J., 175, 531.Google Scholar
Madau, P. 1997, to appear in The Hubble Deep Field , Eds. Livio, M., Fall, S. M., & Madau, P., STScI Symposium Series; astro-ph/9709147.Google Scholar
Maloney, A. & Petrosian, V. 1999, Ap.J., in press, vol 518; astro-ph/9807166.Google Scholar
Marshall, H. L. 1985, Ap.J., 299, 109.Google Scholar
Miyaji, T. Husinger, G. & Schmidt, M. 1998, astro-ph/9809398.Google Scholar
Petrosian, V. 1974, Ap.J., 188, 443.Google Scholar
Petrosian, V. 1992, in Statistical Challenges in Modern Astronomy , Eds. Feigelson, E. D. & Babu, G. J., (New York: Springer-Verlag), p. 173.CrossRefGoogle Scholar
Schmidt, M. 1968, Ap.J., 151, 393.Google Scholar
Schmidt, M., Schneider, D. P. & Gunn, J. E. 1995, A.J., 110, 68.CrossRefGoogle Scholar
Shaver, P.A., Hook, I. M., Jackson, C. A., Wall, J. V., & Kellermann, K. I. 1998, to appear in Highly Redshifted Radio Lines , eds. Carilli, C., Radford, S., Menten, K., Langston, G., (PASP: San Francisco); astro-ph/9801211.Google Scholar
Warren, S. J., Hewett, P. C., & Osmer, P. S. 1994, Ap.J., 421, 412.CrossRefGoogle Scholar