Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-26T20:27:28.272Z Has data issue: false hasContentIssue false

Electron Beams and Langmuir Turbulence in Solar Type III Radio Bursts Observed in the Interplanetary Medium

Published online by Cambridge University Press:  19 July 2016

R. P. Lin*
Affiliation:
Space Sciences Laboratory and Department of Astronomy University of California Berkeley, CA 94720 USA

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The ISEE-3 spacecraft has provided in situ observations of electron beams, plasma waves, and associated solar type III radio emission in the interplanetary medium near 1 AU. These observations show that electron beams are formed by the faster electrons arriving before the slower ones, following an impulsive injection at the Sun. The resulting bump-on-tail in the reduced one-dimensional distribution function, f(v||), is unstable to the growth of electrostatic electron plasma (Langmuir) waves. The Langmuir waves are observed to be highly impulsive in nature. The onset and temporal variations of the observed plasma waves are in good qualitative agreement with the wave growth expected from the evolution of measured f(v||). However, far higher Langmuir wave intensities are predicted than are detected. In addition, the lack of obvious plateauing of the bump-on-tail suggests that the waves have been removed from resonance with the beam electrons by some wave-wave interaction. Bursts of low frequency, 30–300 Hz (in the spacecraft frame) waves are often found coincident in time with the most intense spikes of the Langmuir waves. These low-frequency waves appear to be long-wavelength ion acoustic waves, with wave number approximately equal to the beam-resonant Langmuir wave number. The observations suggest several possible interpretations: modulational instability, electrostatic decay instability, and electromagnetic decay instability; but none of these are fully consistent with the observations. Microstructures, too short in duration to be resolved by present experiments, have been invoked as an explanation of the phenomenon. Experiments are currently being developed to study these processes using fast wave-particle correlation techniques.

Type
IX. Solar Radio Emission
Copyright
Copyright © Kluwer 1990 

References

REFERENCES

Alvarez, H., Haddock, F. T., and Lin, R. P., Solar Phys. 26, 468, 1972.Google Scholar
Bardwell, S., and Goldman, M. V., Astrophys. J. 209, 912, 1976.Google Scholar
Celnikier, L. M., Harvey, C. C., Jegou, R., Kemp, M., and Moricet, P., Astron. Astrophys. 126, 293, 1983.Google Scholar
Celnikier, L. M., Muschietti, L., and Goldman, M. V., Astron. Astrophys. 181, 138, 1987.Google Scholar
Dulk, G. A., Steinberg, J. L., and Hoang, S., Astron. Astrophys. 141, 30, 1984.Google Scholar
Escande, D. F., and de Genouillac, G. V., Astron. Astrophys. 68, 405, 1978.Google Scholar
Escande, D. F., and Souillard, B., Phys. Rev. Lett. 52, 1297, 1984.Google Scholar
Frank, L. A., and Gurnett, D. A., Solar Phys. 27, 446, 1972.CrossRefGoogle Scholar
Ginzburg, V. L., and Zheleznyakov, V. V., Sov. Astron.–AJ 2, 653, 1958.Google Scholar
Goldman, M. V., Solar Phys. 89, 403, 1983.Google Scholar
Goldman, M. V., Rev. Mod. Phys. 55, 709, 1984.Google Scholar
Goldman, M. V., and DuBois, D. F., Phys. Fluids 25, 1062, 1982.Google Scholar
Grognard, R. J.-M., Solar Phys. 81, 173, 1980.CrossRefGoogle Scholar
Gurnett, D. A., and Anderson, R. R., Science 194, 1159, 1976.CrossRefGoogle Scholar
Gurnett, D. A., and Anderson, R. R., J. Geophys. Res. 82, 632, 1977.Google Scholar
Kaplan, S. A., and Tsytovich, V. N., Sov. Astron.–AJ 11, 956, 1968.Google Scholar
Kellogg, P. J., Astrophys. J. 236, 696, 1980.Google Scholar
Levedahl, K., Ph.D. thesis, University of California, Berkeley, 1987.Google Scholar
Lin, R. P., Solar Phys. 12, 266, 1970.Google Scholar
Lin, R. P., Space Sci. Rev. 16, 189, 1974.CrossRefGoogle Scholar
Lin, R. P., Evans, L. G., and Fainberg, J., Astrophys. Letters 14, 191, 1973.Google Scholar
Lin, R. P., Potter, D. W., Gurnett, D. A., and Scarf, F. L., Astrophys. J. 251, 364, 1981.Google Scholar
Lin, R. P., Levedahl, W. K., Lotko, W., Gurnett, D. A., and Scarf, F. L., Astrophys. J. 308, 954, 1986.Google Scholar
Magelssen, G. R., and Smith, D. F., Solar Phys. 55, 211, 1977.CrossRefGoogle Scholar
McDonald, S. W., Ph.D. thesis, University of California, Berkeley, 1983.Google Scholar
Melrose, D. B., and Goldman, M. V., Solar Phys. 107, 329, 1987.Google Scholar
Muschietti, L., Goldman, M. V., and Newman, D., Solar Phys. 96, 181, 1985.Google Scholar
Nicholson, D. R., Goldman, M. V., Hoyng, P., and Weatherall, J. C., Astrophys. J. 225, 605, 1978.Google Scholar
Papadopoulous, K., Phys. Fluids 18, 1979, 1975.Google Scholar
Papadopoulous, K., Goldstein, M. L., and Smith, R. A., Astrophys. J. 190, 175, 1974.Google Scholar
Russell, D. A., and Goldman, M. V., Phys. Fluids 26, 2717, 1983.CrossRefGoogle Scholar
Smith, D. F., and Sime, D., Astrophys. J. 233, 998, 1979.Google Scholar
Sturrock, P. A., AAS-NASA Symposium on the Physics of Solar Flares , ed. Hess, W. N. (NASA SP-50), p. 357, 1964.Google Scholar
Takakura, T., and Shibahashi, H., Solar Phys. 46, 323, 1976.Google Scholar
Tsytovich, V. N., Nonlinear Effects in Plasmas , New York, Plenum, 1970.Google Scholar
Wild, J. P., Australian J. Sci. Res. A3, 541, 1950a.Google Scholar
Wild, J. P., Australian J. Sci. Res. A3, 399, 1950b.Google Scholar
Zakharov, V. E., Soviet Phys.–JETP 35, 908, 1972.Google Scholar