Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-25T06:48:40.363Z Has data issue: false hasContentIssue false

Diffuse Interstellar Bands

Published online by Cambridge University Press:  25 May 2016

P. J. Sarre
Affiliation:
School of Chemistry, The University of Nottingham, University Park, Nottingham, NG7 2RD, UK
T. R. Kendall
Affiliation:
School of Chemistry, The University of Nottingham, University Park, Nottingham, NG7 2RD, UK

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The unidentified diffuse interstellar bands are observed in near-UV, visible and near-IR spectra recorded towards stars which are partially obscured by interstellar dust. Their origin is the longest standing problem in astronomical spectroscopy and dates back to the 1930s when systematic study of the bands first started. Proposals for the carriers range from molecular hydrogen to porphyrins and from colour centres to species adsorbed on grain surfaces. This paper contains a short review of the problem and a discussion of recent possible assignments of some of the bands to transitions of the H2, and molecules. Observations of ultra-high resolution spectra of diffuse absorption bands, optical diffuse emission bands from the Red Rectangle, and complementary studies of the 3.3 μm ‘unidentified’ infrared (UIR) emission band are described.

Type
Part 5. Grains and Large Molecules
Copyright
Copyright © Astronomical Society of the Pacific 2000 

References

Cami, J., Sonnentrucker, P., Ehrenfreund, P., & Foing, B.H. 1997, A&A, 326, 822 Google Scholar
Diego, F., et al. 1995, MNRAS, 272, 323 CrossRefGoogle Scholar
Douglas, A.E. 1977, Nature, 269, 130 CrossRefGoogle Scholar
Ehrenfreund, P. & Foing, B.H. 1996, A&A, 307, L25 Google Scholar
Foing, B.H. & Ehrenfreund, P. 1997, A&A, 317, L59 Google Scholar
Fulara, J., Jakobi, M., & Maier, J.P. 1993, Chem. Phys. Lett., 211, 227 CrossRefGoogle Scholar
Herbig, G.H. 1995, ARA&A, 33, 19 Google Scholar
Jenniskens, P., Mulas, G., Porceddu, I., & Benvenuti, P. 1997, A&A, 327, 337 Google Scholar
Kerr, T.H., Hibbins, R.E., Miles, J.R., Fossey, S.J., Somerville, W.B., & Sarre, P.J. 1996, MNRAS, 283, L105 CrossRefGoogle Scholar
Kerr, T.H., Hibbins, R.E., Fossey, S.J., Miles, J.R., & Sarre, P.J. 1998, ApJ, 495, 941 CrossRefGoogle Scholar
Krelowski, J. & Walker, G.A.H. 1987, ApJ, 312, 860 CrossRefGoogle Scholar
Krelowski, J., et al. 1999, A&A, 347, 235 Google Scholar
Kirkwood, D.A., et al. 1998, Farad. Disc. Chem. Soc., 109, 109 Google Scholar
Merrill, P.W. & Wilson, O.C. 1938, ApJ, 87, 9 CrossRefGoogle Scholar
Moutou, C., Sellgren, K., Verstraete, L., & Léger, A., 1999, A&A, 347, 949 Google Scholar
Sarre, P.J., Miles, J.R., Kerr, T.H., Hibbins, R.E., Fossey, S.J., & Somerville, W.B. 1995, MNRAS, 277, L41 Google Scholar
Sarre, P.J., Miles, J.R., & Scarrott, S.M. 1995, Science, 269, 674 CrossRefGoogle Scholar
Schmidt, G.D., Cohen, M., & Margon, B. 1980, ApJ, 239, L133 CrossRefGoogle Scholar
Schmidt, G.D. & Witt, A.N. 1991, ApJ, 383, 698 CrossRefGoogle Scholar
Snow, T.P. 1998, Farad. Disc. Chem. Soc., 109, 230 Google Scholar
Sorokin, P.P. & Glownia, J.H. 1996, ApJ, 473, 900 CrossRefGoogle Scholar
Tulej, M., Kirkwood, D. A., Pachkov, M., & Maier, J.P. 1998, ApJ, 506, L69 CrossRefGoogle Scholar