Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-07-03T19:37:13.208Z Has data issue: false hasContentIssue false

Deuterium and Helium-3 in the Protosolar Cloud

Published online by Cambridge University Press:  25 May 2016

George Gloeckler
Affiliation:
Department of Physics and IPST, University of Maryland, College Park, Maryland 20742, and Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, Michigan 48109, USA
Johannes Geiss
Affiliation:
International Space Science Institute, Hallerstrasse 6, CH-3012 Bern, Switzerland

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

New measurements of the isotopic composition of helium in the solar wind obtained from the Solar Wind Ion Composition Spectrometer (SWICS) on Ulysses are presented and compared with earlier SWICS results and previous mass spectrometric determinations of this ratio with the Apollo Solar Wind Composition (SWC) experiment and the Ion Composition Instrument (ICI) on the International Sun Earth Explorer 3 (ISEE 3). The new SWICS data from both the fast and slow solar wind are extrapolated to the photosphere to obtain a representative value of the present-day ratio of 3He/4He = (3.75 ± 0.27) × 10−4 in the Outer Convective Zone (OCZ) of the Sun. After corrections of this ratio for secular changes caused by diffusion, mixing and 3He production by incomplete H-burning (Vauclair 1998), we obtain (D + 3He)/H = (3.6 ± 0.38) × 10−5 for the Protosolar Cloud (PSC). Adopting the Jovian 3He/4He ratio = (1.66 ±0.05) × 10−4 measured by the Galileo Probe mass spectrometer (Mahaffy et al. 1998) as representative for the PSC, we obtain (D/H)protosolar = (1.94 ±0.39) × 10−5. Using results of galactic evolution studies (Tosi 1998, 2000) and the D and 3He abundances in the Protosolar Cloud and the Local Interstellar Cloud (Linsky 1998; Gloeckler &Geiss 1998), we estimate (D/H)primordial = (2.4 − 4.2) × 10−5. This range corresponds to a universal baryon/photon ratio of (5.9−4.2) × 10−10.

Type
3. Abundances of D, 3He and 4He
Copyright
Copyright © Astronomical Society of the Pacific 2000 

References

Bahcall, J. N., & Pinsonneault, M. H. 1995, Rev. Modern Phy., 67, 781 Google Scholar
Bame, S. J., McComas, D. J., Barraclough, B.L., et al. 1992, ApJS, 92, 239 Google Scholar
Bjoraker, G. L., Larson, H. P., & Kunde, V.G. 1986, Icarus, 66, 579 Google Scholar
Bochsler, P. 1984, Helium and Oxygen in the Solar Wind, University of Bern Habilitation Google Scholar
Bodmer, R., Bochsler, P., Geiss, J., von Steiger, R., & Gloeckler, G. 1995, Space Sci. Rev., 72, 61 Google Scholar
Burles, S., & Tytler, D. 1998, Space Sci. Rev., 84, 65 Google Scholar
Carlson, B. E., Lacis, A. A., & Rossow, W. B. 1993, J. Geophys. Res. 98, 5251 Google Scholar
Coplan, M. A., Ogilvie, K. W., Bochsler, P., & Geiss, J. 1984, Solar Phys. 93, 415 Google Scholar
De Boer, K. S., & Savage, B. D. 1993, ApJ 265, 210215 CrossRefGoogle Scholar
Encrenaz, T., de Graauw, T., Schaeidt, S., et al. 1996, A&A, 315, L397 Google Scholar
Fischer, Ph., McKay, T. A., Sheldon, E., et al. 2000, Astron. J., in press Google Scholar
Gautier, D., & Morel, P. 1997, A&A, 323, L9 Google Scholar
Gautier, D., & Owen, T. 1989, in Origin and Evolution of Planetary and Satellite Atmospheres, eds. Atreya, S. K. et al., (Cambridge: Univ. Arizona Press), 487 Google Scholar
Geiss, J. 1982, Space Sci. Rev., 33, 201 Google Scholar
Geiss, J. 1993, in Origin and Evolution of the Elements, eds. Prantzos, N., Vangioni-Flam, E., & Cass, M. Cambridge University Press, 89 Google Scholar
Geiss, J., & Reeves, H. 1972, A&A, 18, 126 Google Scholar
Geiss, J., & Gloeckler, G. 1998, Space Sci. Rev., 84, 275 CrossRefGoogle Scholar
Geiss, J., Eberhardt, P., Bühler, F., Meister, J., & Signer, P. 1970, J. Geophys. Res., 75, 5972 Google Scholar
Geiss, J., Bühler, F., Cerutti, H., Eberhardt, P., & Filleux, Ch. 1972, Apollo 16 Preliminary Science Report, NASA SP-315, section 14 Google Scholar
Gloeckler, G., & Geiss, J. 1998, Space Sci. Rev., 84, 239 CrossRefGoogle Scholar
Gloeckler, G., Geiss, J., Balsiger, H., et al. 1992, A & A Suppl. Ser., 92, 267 Google Scholar
Grevesse, N., & Sauval, A. J. 1998, Space Sci. Rev., 85, 161 Google Scholar
Linsky, J. L. 1998, Space Sci. Rev., 84, 285 CrossRefGoogle Scholar
Mahaffy, P. R., Donahue, T. M., Atreya, S. K., Owen, T. C., & Niemann, H. B. 1998, Space Sci. Rev., 84, 251 Google Scholar
Ogilvie, K. W., Coplan, M. A., Bochsler, P., & Geiss, J. 1980, J. Geophys. Res., 85, 6021 Google Scholar
Pérez Hernández, F., & Christensen-Dalsgaard, J. 1994, MNRAS, 269, 475 Google Scholar
Reeves, H., Audouze, J., Fowler, W. A., & Schramm, D. N. 1993, ApJ, 179, 909 CrossRefGoogle Scholar
von Steiger, R., Schwadron, N. A., Fisk, L. A., et al. 2000, J. Geophys. Res. (in press) Google Scholar
Smith, W. H., Schempp, W. V., & Baines, K. H. 1989, ApJ, 336, 967 Google Scholar
Tammann, G. A. 1998, Space Sci. Rev., 84, 15 Google Scholar
Tosi, M. 1998, Space Sci. Rev., 84, 207218 Google Scholar
Tosi, M., Steigman, G., Matteucci, F., & Chiappini, C. 1998, ApJ, 498, 226235 Google Scholar
Tosi, M., 2000, in The Light Elements and Their Evolution, eds. da Silva, L., Spite, M., & de Medeiros, J. R., ASP Conf. Ser. 3 Google Scholar
Tscharnuter, W. M. 1987, A&A, 188, 55 Google Scholar
Vauclair, S. 1998, Space Sci. Rev., 84, 265 Google Scholar
Walker, T. P., Steigman, G., Schramm, D. N., Olive, K. A., & Kang, H. S. 1991, ApJ, 376, 51 CrossRefGoogle Scholar
Wieler, R., Baur, H., & Signer, P. 1992, Lunar Plantet Sci., XXIII, 1525 Google Scholar