Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-16T12:27:15.464Z Has data issue: false hasContentIssue false

Comets (Existing Populations)

Published online by Cambridge University Press:  19 July 2016

Ľ. Kresák*
Affiliation:
Astronomical Institute of the Slovak Academy of Sciences 842 28 Bratislava, Slovakia

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The definition, population, extent, origin and evolution of the individual subsystems of comets and transitions between them are discussed, together with presentation of the relevant statistical data and their changes with time. The largest outer subsystems are unobservable, but their existence is documented by the necessity of progressive replenishment of the observable populations, with limited survival times. There is persuasive evidence for two different evolutionary paths, one from the Oort cloud and another from the Kuiper belt. While the extent and accuracy of the data available is increasing rapidly, the Jupiter family of comets is the only one for which the evolutionary time scales do not exceed by many orders of magnitude the history of astronomical observations. The individual comet populations differ from one another not only by the distribution of orbits, but also by the size distribution and aging rate of their members. Their dynamical evolution is coupled with disintegration processes, which make it questionable whether the present state can be interpreted as a long-term average.

Type
Populations of Small Bodies
Copyright
Copyright © Kluwer 1994 

References

Bailey, M.E.: 1986, “The mean energy transfer to comets in the Oort cloud and implications for cometary origins.” Mon. Not. R. Astron. Soc., 218, 130.Google Scholar
Bailey, M.E.: 1990, “Short-period comets: probes of the inner core.” In Asteroids, Comets, Meteors III (Lagerkvist, C.-I., Rickman, H., Lindblad, B. A. and Lindgren, M., Eds.), 221230, Univ. of Uppsala Press.Google Scholar
Bailey, M.E.: 1992, “Origin of short-period comets.” Celest. Mech., 54, 4961.Google Scholar
Baldet, F., de Obaldia, G.: 1952, Catalogue Général des Orbites de Comètes, CNRS, Paris.Google Scholar
Biermann, L., Huebner, W.F., Lüst, R.: 1983, “Aphelion clustering of new comets: Star tracks through Oort's cloud!” Proc. Natl. Acad. Sci. USA, 80, 51515155.Google Scholar
Carusi, A., Valsecchi, G.B.: 1985, “Statistical and numerical studies of the orbital evolution of short-period comets.” In Dynamics of Comets: their Origin and Evolution (Carusi, A. and Valsecchi, G.B., Eds.), 261278, D. Reidel, Dordrecht.Google Scholar
Carusi, A., Kresák, Ľ., Perozzi, E., Valsecchi, G.B.: 1985a, Long-term Evolution of Short-period Comets, A. Hilger, Bristol (together with data for a new edition).Google Scholar
Carusi, A., Kresák, Ľ., Perozzi, E., Valsecchi, G.B.: 1985b, “First results of the integration of motion of short-period comets over 800 years.” In Dynamics of Comets: their Origin and Evolution (Carusi, A. and Valsecchi, G.B., Eds.), 319340, D. Reidel, Dordrecht.Google Scholar
Carusi, A., Kresák, Ľ., Perozzi, E., Valsecchi, G.B.: 1987, “High-order librations of Halley-type comets.” Astron. Astrophys., 187, 899905.Google Scholar
Clube, S.V.M.: 1992, “The fundamental role of giant comets in the Earth history.” Celest. Mech., 54, 179193.Google Scholar
Delsemme, A.H.: 1987, “Galactic tides affect the Oort cloud: an observational confirmation.” Astron. Astrophys., 187, 913918.Google Scholar
Duncan, M., Quinn, T., Tremaine, S.: 1988, “The origin of short-period comets.” Astrophys. J., 328, L69L73.Google Scholar
Everhart, E., Raghavan, N.: 1970, “Changes in total energy for 392 long-period comets, 1800-1970.” Astron. J., 75, 258272.Google Scholar
Fernández, J.A.: 1985, “Dynamical capture and physical decay of short-period comets.” Icarus, 64, 308319.Google Scholar
Fernández, J.A., Rickman, H., Kamél, L.: 1992, “The population size and distribution of perihelion distances of the Jupiter family.” In Periodic Comets (Fernández, J.A. and Rickman, H., Eds.), 143157, Univ. Montevideo Press.Google Scholar
Galle, J.: 1894, Verzeichniss der Elemente der bisher berechneten Cometenbahnen, W. Engelmann, Leipzig.Google Scholar
Halley, E.: 1705, “Tabulae astronomicae.” Phil. Transactions R. Astron. Soc., 24, 1882.Google Scholar
Kresák, Ľ.: 1977, “An alternate interpretation of the Oort cloud of comets?” In Comets, Asteroids, Meteorites (Delsemme, A.H., Ed.), 9397, Univ. Toledo Press, Ohio.Google Scholar
Kresák, Ľ.: 1982, “Dynamical evolution and disintegration of comets.” In Sun and Planetary System (Fricke, W. and Teleki, G., Eds.), 361370, D. Reidel, Dordrecht.Google Scholar
Kresák, Ľ.: 1985, “The aging and lifetimes of comets.” In Dynamics of Comets: their Origin and Evolution (Carusi, A. and Valsecchi, G.B., Eds.), 279302, D. Reidel, Dordrecht.Google Scholar
Kresák, Ľ.: 1987, “Dormant phases in the aging of periodic comets.” Astron. Astrophys., 187, 906908.Google Scholar
Kresák, Ľ.: 1991, “Evidence for physical aging of periodic coemts.” In Comets in the Post-Halley Era (Newburn, R.L. Jr., Neugebauer, M. and Rahe, J., Eds.), 607628, Kluwer Acad. Publ., Dordrecht.Google Scholar
Kresák, Ľ.: 1992, “Are there any comets coming from interstellar space?” Astron. Astrophys., 259, 682691.Google Scholar
Kresák, Ľ.: 1993, “Cometary dust trails and meteor storms.” Astron. Astrophys., in press.Google Scholar
Kresák, Ľ., Kresáková, M.: 1990, “Secular variations of absolute magnitudes of periodic comets.” Icarus, 86, 8292.Google Scholar
Kresák, Ľ., Štohl, J.: 1990, “Genetic relationships between comets, asteroids and meteors.” In Asteroids, Comets, Meteors III (Lagerkvist, C.-I., Rickman, H., Lindblad, B. A. and Lindgren, M., Eds.), 379388, Univ. Uppsala Press.Google Scholar
Kuiper, G.P.: 1951, “Origin of the Solar system.” In Astrophysics (Hynek, J.A., Ed.), 357424, McGraw-Hill, New York.Google Scholar
Marsden, B.G.: 1972, Catalogue of Cometary Orbits (1st edition), Minor Planet Center, SAO, Cambridge, MA.Google Scholar
Marsden, B.G.: 1982, Catalogue of Cometary Orbits (4th edition), Minor Planet Center, SAO, Cambridge, MA.Google Scholar
Marsden, B.G.: 1992, Catalogue of Cometary Orbits (7th edition), Minor Planet Center, SAO, Cambridge, MA.Google Scholar
Matese, J.J., Whitman, P.G.: 1992, “A model of the galactic and tidal intercation with the Oort comet cloud.” Celest. Mech., 54, 1335.Google Scholar
Meech, K.J. 1991, “Physical aging of comets.” In Comets in the Post-Halley Era (Newburn, R.L. Jr., Neugebauer, M. and Rahe, J., Eds.), 629669, Kluwer Acad. Publ., Dordrecht.Google Scholar
Meech, K.J., Belton, M.J.S.: 1989, “(2060) Chiron.” IAU Circ. No. 4770.Google Scholar
Milani, A., Carpino, M., Hahn, G., Nobili, A.M.: 1989, “Project Spaceguard: Dynamics of planet-crossing asteroids.” Icarus, 78, 212269.Google Scholar
Oort, J.H.: 1950, “The structure of the cloud of comets surrounding the Solar System, and a hypothesis concerning its origin.” Bull. Astron. Inst. Neth., 11, 91110.Google Scholar
Oort, J.H.: 1990, “Orbital distribution of comets.” In Physics and Chemistry of Comets (Huebner, W.F., Ed.), 235244, Springer-Verlag, Berlin.Google Scholar
Pingré, P.: 1784, Cométographie ou Traité historique et théorique des Comètes, Impr. Royale, Paris.Google Scholar
Quinn, T., Tremaine, S., Duncan, M.: 1990, “Planetary perturbations and the origin of short-period comets.” Astrophys. J., 355, 667679.Google Scholar
Rabinowitz, D.L.: 1993, “The size distribution of Earth-approaching asteroids.” Astrophys. J., in press.Google Scholar
Rickman, H.: 1992, “Structure and evolution of the Jupiter family.” Celest. Mech., 54, 6369.Google Scholar
Rickman, H., Huebner, W.F.: 1990, “Comet formation and evolution.” In Physics and Chemistry of Comets (Huebner, W.F., Ed.), 245303, Springer-Verlag, Berlin.Google Scholar
Rickman, H., Froeschlé, C., Kamél, L., Festou, M.C.: 1991, “Nongravitational effects and the aging of periodic comets.” Astron. J., 102, 14461463.Google Scholar
Steel, D., Asher, D. J., Clube, S. V. M.: 1992, “Giant comet origin for the Taurid complex.” In Periodic Comets (Fernández, J.A. and Rickman, H., Eds.), 189200, Univ. Montevideo Press.Google Scholar
Sykes, M.V., Walker, R.G.: 1992, “Cometary Dust Trails. I. Survey.” Icarus, 95, 180210.Google Scholar
Valsecchi, G.B.: 1992, “Close encounters, planetary masses and the evolution of cometary orbits.” In Periodic Comets (Fernández, J.A. and Rickman, H., Eds.), 8196, Univ. Montevideo Press.Google Scholar
Weissman, P.R.: 1980, “Physical loss of long-period comets.” Astron. Astrophys., 85, 191196.Google Scholar
Weissman, P.R.: 1985, “Dynamical evolution of the Oort cloud.” In Dynamics of Comets: their Origin and Evolution (Carusi, A. and Valsecchi, G.B., Eds.), 8796, D. Reidel, Dordrecht.Google Scholar
Whipple, F.L.: 1978, “Cometary brightness variation and nucleus structure.” Moon and Planets, 18, 343359.Google Scholar
Whipple, F.L.: 1992a, “A new activity index of comets.” In Asteroids, Comets, Meteors 1991 (Harris, A.W. and Bowell, E., Eds.), 633640, Lunar Planet. Inst., Houston.Google Scholar
Whipple, F.L.: 1992b, “The activities of comets related to their aging and origin.” Celest. Mech., 54, 111.Google Scholar
Yabushita, S.: 1991, “Maximum nongravitational acceleration due to outgassing cometary nuclei.” Earth, Moon and Planets, 52, 8792.Google Scholar