Hostname: page-component-77c89778f8-9q27g Total loading time: 0 Render date: 2024-07-20T19:54:28.245Z Has data issue: false hasContentIssue false

Angular Momentum Transport and Mixing by Magnetic Fields

Published online by Cambridge University Press:  26 May 2016

H. C. Spruit*
Affiliation:
Max-Planck Institut für Astrophysik, Postfach 1317, 85741 Garching, Germany

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Magnetic fields can be created in stably stratified (non-convective) layers in a differentially rotating star. A magnetic instability in the toroidal field (wound up by differential rotation) replaces the role of convection in closing the field amplification loop. A dynamo model is developed from these ingredients, and applied to the problem of angular momentum transport in stellar interiors. It produces a predominantly horizontal field. The process is found to be more effective in transporting angular momentum than the known hydrodynamic mechanisms, with the possible exception of transport by internal gravity waves.

Type
Session 3 Rotation, Solar and Stellar Physics
Copyright
Copyright © Astronomical Society of the Pacific 2004 

References

Acheson, D.J. 1978, Phil Trans. Roy. Soc. Lond. A289, 459 Google Scholar
Balbus, S.A., & Hawley, J.F. 1991, ApJ 376, 214 CrossRefGoogle Scholar
Chandrasekhar, S. 1960, Proc. Nat. Acad. Sci. 46, 253 Google Scholar
Charbonneau, P. 2004, this volume Google Scholar
Goossens, M., Biront, D., & Tayler, R.J. 1981, Ap. Space Sci. 75, 521 Google Scholar
Hawley, J.F., Gammie, C.F., & Balbus, S.A. 1996, ApJ 464, 690 CrossRefGoogle Scholar
Heger, A., Langer, N. & Woosley, S.E. 2000, ApJ 528, 368 CrossRefGoogle Scholar
Heger, A., Woosley, S. E., Langer, N. & Spruit, H. C. 2004, this volume Google Scholar
Kumar, P., Talon, S., & Zahn, J.-P. 1999, ApJ 520, 859 Google Scholar
Maeder, A., & Zahn, J.-P. 1998, A&A 334, 1000 Google Scholar
MacFadyen, A.I., Woosley, S.E., & Heger, A. 2001, ApJ 550, 410 Google Scholar
Markey, P., & Tayler, R.J. 1973, MNRAS 163, 77 CrossRefGoogle Scholar
Markey, P., & Tayler, R.J. 1974, MNRAS 168, 505 CrossRefGoogle Scholar
Mestel, L. 1953, MNRAS 113, 716 (remark on p. 735) Google Scholar
Parker, E.N. 1966, ApJ 145, 811 Google Scholar
Oxford, Clarendon Press Google Scholar
Pitts, E. & Tayler, R.J. 1986, MNRAS 216, 139 Google Scholar
Neubauer, F.M. 1983, ApJ 271, 335 Google Scholar
Spruit, H.C. 1998, A&A 333, 603 Google Scholar
Spruit, H.C. 1999, A&A 349, 189 (Paper I) Google Scholar
Spruit, H.C. 2002, A&A 381, 923 (Paper II) Google Scholar
Spruit, H.C., & Phinney, E.S. 1998, Nature, 393, 139 Google Scholar
Spruit, H.C., Knobloch, E., & Roxburgh, I.W. 1983, Nature 304, 520 Google Scholar
Talon, S., & Zahn, J.-P., 1998, A&A 329, 315 Google Scholar
Talon, S. 2004, this volume Google Scholar
Tayler, R.J. 1957, Proc. Phys. Soc. B 70, 31 CrossRefGoogle Scholar
Tayler, R.J. 1973, MNRAS 161, 365 Google Scholar
Townsend, A.A. 1958, J. Fluid Mech. 4, 361 Google Scholar
Velikhov, E.P. 1959, J. Exp. Theoret. Phys. (USSR), 36, 1398 Google Scholar
Zahn, J.-P. 1974, in Stellar Instability and Evolution, eds. Ledoux, P. et al., Reidel, Dordrecht, 185 Google Scholar
Zahn, J.-P. 1983, in Astrophysical Processes in upper Main Sequence Stars, eds. Cox, A.N. et al., Geneva Observatory, Switzerland, 225 Google Scholar
Zahn, J.-P. 1992, A&A 265, 115 Google Scholar
Zahn, J.-P., Talon, S., & Matias, J. 1997, A&A 322, 320 Google Scholar