Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-26T15:43:04.103Z Has data issue: false hasContentIssue false

Abundances of Refractory Elements in the Orion Nebula

Published online by Cambridge University Press:  07 August 2017

R. H. Rubin
Affiliation:
NASA Ames Research Center, M.S. 245 − 6, Moffett Field, CA 94035 USA.
E. F. Erickson
Affiliation:
NASA Ames Research Center, M.S. 245 − 6, Moffett Field, CA 94035 USA.
M. R. Haas
Affiliation:
NASA Ames Research Center, M.S. 245 − 6, Moffett Field, CA 94035 USA.
S.W.J. Colgan
Affiliation:
NASA Ames Research Center, M.S. 245 − 6, Moffett Field, CA 94035 USA.
J. P. Simpson
Affiliation:
NASA Ames Research Center, M.S. 245 − 6, Moffett Field, CA 94035 USA.
R. J. Dufour
Affiliation:
Dept. Space Physics & Astronomy, Rice University, Houston, TX 77251 USA.

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We assess the gas-phase abundances of Si, C, and Fe from our recent measurements of Si++, C++, and Fe++ in the Orion Nebula by expanding on our earlier “blister” models. The Fe++ 22.9 μm line measured with the KAO yields Fe/H ~ 3 × 10−6 - considerably larger than in the diffuse ISM, where relative to solar, Fe/H is down by ~ 100. However, in Orion, Fe/H is still lower than solar by a factor ~ 10. The C and Si abundances are derived from new IUE high dispersion spectra of the C++ 1907, 1909 Å and Si++ 1883, 1892 Å lines. Gas-phase Si/C = 0.016 in the Orion ionized volume and is particularly insensitive to uncertainties in extinction and temperature structure. The solar value is 0.098. Gas-phase C/H = 3 × 10−4 and Si/H = 4.8 × 10−6. Compared to solar, Si is depleted by 0.135 in the ionized region, while C is essentially undepleted. This suggests that most Si and Fe resides in dust grains even in the ionized volume.

Type
Quiescent Clouds and Regions of Star Formation
Copyright
Copyright © Kluwer 1992 

References

REFERENCES

Anders, E., & Grevesse, N. 1989, Geochim. Cosmochim. Acta , 53, 197.Google Scholar
Berrington, K.A. et al. 1991, J. Phys. B , submitted.Google Scholar
Bohlin, R.C., & Savage, B.D. 1981, ApJ , 249, 109.Google Scholar
Erickson, E.F., Haas, M.R., Simpson, J.P., Rubin, R.H., & Colgan, S.W.J. 1989, BAAS , 21, 1156.Google Scholar
Haas, M.R., Hollenbach, D., & Erickson, E.F. 1986, ApJL , 301, L57.Google Scholar
Holweger, H., Heise, C., & Kock, M. 1990, Astron. Astrophys. , 232, 510.Google Scholar
Rubin, R.H., Simpson, J. P., Haas, M. R., & Erickson, E. F. 1991a, ApJ , 374, 564 (RSHE).CrossRefGoogle Scholar
Rubin, R.H., Simpson, J. P., Haas, M. R., & Erickson, E. F. 1991b, PASP , 103, 834.CrossRefGoogle Scholar
Torres-Peimbert, S., Peimbert, M., & Daltabuit, E. 1980, ApJ , 238, 133.Google Scholar
Van Steenberg, M.E., & Shull, J.M. 1988, ApJ , 330, 942.Google Scholar
Walter, D.K. 1991, PASP , 103, 830.Google Scholar