Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-07-05T05:48:35.810Z Has data issue: false hasContentIssue false

80 MHz Radioheliograph Evidence on Moving Type IV Bursts and Coronal Magnetic Fields

Published online by Cambridge University Press:  14 August 2015

S. F. Smerd
Affiliation:
Division of Radiophysics, C.S.I.R.O., Sydney, Australia
G. A. Dulk
Affiliation:
Division of Radiophysics, C.S.I.R.O. and Department of Astro-Geophysics, University of Colorado, Boulder, Colo., U.S.A.

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The characteristics of 12 moving type IV bursts observed with the 80 MHz radioheliograph at the Culgoora Observatory between February 1968 and April 1970 are summarized.

Three classes of moving sources can be recognized; they are described as: (1) Expanding arch; (2) Advancing front; (3) Isolated source.

The first class has been identified (Wild, 1969) with the expansion of a magnetic arch or loop; the second class is here identified with an advancing MHD disturbance which may accelerate the radiating electrons in situ when moving at greater than Alfvén speed; the third with solar ejecta in the form of magnetized plasma clouds, or plasmoids. In all cases the radiation mechanism is probably synchrotron radiation from mildly relativistic electrons; energies in the range ∼0.1 to ∼1 MeV could account for the observed strong circular polarizations.

With an expanding magnetic arch, source and magnetic-field movement are inseparable; the field remains a closed loop throughout the event. The MHD front probably moves largely along and the plasmoids between the open magnetic-field lines of unipolar regions or helmet structures. In the latter case it is the internal magnetic field – possibly toroidal – of the moving plasmoid that determines the polarization of the synchrotron radiation. A preliminary comparison of moving type IV sources with Newkirk-Altschuler maps of coronal magnetic fields shows suitably located closed loops for 2 events identified as expanding magnetic arches and unipolar open field lines along the path of a moving source identified as a plasmoid.

Type
Part VI: Optical and Radio Observations of Large Scale Magnetic Fields on the Sun
Copyright
Copyright © Reidel 1971 

References

Altschuler, M. D. and Newkirk, G. Jr.: 1969, Solar Phys. 9, 131.Google Scholar
Boischot, A.: 1957, Compt. Rend. Acad. Sci. Paris 244, 1326.Google Scholar
Boischot, A. and Clavelier, B.: 1967, Astrophys. Letters 1, 7.Google Scholar
Boischot, A. and Clavelier, B.: 1968, Ann. Astrophys. 31, 445.Google Scholar
Boischot, A. and Daigne, G.: 1968, Ann. Astrophys. 31, 531.Google Scholar
Boischot, A. and Denisse, J. F.: 1957, Compt. Rend. Acad. Sci. Paris 245, 2194.Google Scholar
Dulk, G. A.: 1970, Proc. Astron. Soc. Austral. 1, 372.Google Scholar
Dulk, G. A.: 1971, Australian J. Phys. 24, 217.Google Scholar
Dulk, G. A. and Altschuler, M. D.: 1971, submitted to Solar Phys. Google Scholar
Dulk, G. A., Stewart, R. T., Black, H. C., and Johns, I. A.: 1971, Australian J. Phys. 24, 239.Google Scholar
Fung, P. C. W.: 1969, Can. J. Phys. 47, 179.Google Scholar
Ginzburg, V. L. and Syrovatskii, S. I.: 1965, Ann. Rev. Astron. Astrophys. 3, 297.Google Scholar
Helfer, H. L.: 1953, Astrophys. J. 117, 177.CrossRefGoogle Scholar
Kai, K.: 1969a, Proc. Astron. Soc. Austral. 1, 189.Google Scholar
Kai, K.: 1969b, Solar Phys. 10, 460.CrossRefGoogle Scholar
Kai, K.: 1970, Solar Phys. 11, 310.Google Scholar
Lacombe, C. and Mangeney, A.: 1969, Astron. Astrophys. 1, 325.Google Scholar
Meyer, F.: 1968, in Kiepenheuer, K. O. (ed.), ‘Structure and Development of Solar Active Regions’, IAU Symp. 35, 485.Google Scholar
Newkirk, G. Jr.: 1961, Astrophys. J. 133, 983.Google Scholar
Newkirk, G. Jr.: 1971, this volume, p. 547.CrossRefGoogle Scholar
Pikelner, S. B. and Gintsburg, M. A.: 1963, Astron. Zh. 40, 842 = Sov. Astron. 7, 639, 1964.Google Scholar
Riddle, A. C.: 1970, Solar Phys. 13, 448.CrossRefGoogle Scholar
Sheridan, K. V.: 1970, Proc. Astron. Soc. Austral. 1, 376.Google Scholar
Smerd, S. F.: 1970, Proc. Astron. Soc. Austral. 1, 305.CrossRefGoogle Scholar
Smerd, S. F.: 1971, Australian J. Phys. 24, 229.Google Scholar
Sonett, C. P.: 1969, Comments Astrophys. Space Phys. 1, 178.Google Scholar
Stewart, R. T.: 1971, Australian J. Phys. 24, 209.Google Scholar
Stewart, R. T. and Sheridan, K. V.: 1970, Solar Phys. 12, 229.CrossRefGoogle Scholar
Stewart, R. T., Sheridan, K. V., and Kai, K.: 1970, Proc. Astron. Soc. Austral. 1, 313.Google Scholar
Sturrock, P. A.: 1966, Nature 211, 695.Google Scholar
Van de Hulst, H. C.: 1950, Bull. Astron. Inst. Neth. 11, 135.Google Scholar
Warwick, J. W.: 1965, in Solar System Radio Astronomy , ed. by Aarons, J., p. 131, Plenum Press, N.Y. CrossRefGoogle Scholar
Warwick, J. W.: 1968, Solar Phys. 5, 111.Google Scholar
Weiss, A. A.: 1963, Australian J. Phys. 16, 526.CrossRefGoogle Scholar
Wild, J. P.: 1969, Solar Phys. 9, 260.Google Scholar
Wild, J. P.: 1970a, Proc. Astron. Soc. Austral. 1, 365.CrossRefGoogle Scholar
Wild, J. P.: 1970b, Proc. Astron. Soc. Austral. 1, 348.Google Scholar
Wild, J. P., Sheridan, K. V., and Kai, K.: 1968, Nature 218, 536.Google Scholar
Wild, J. P., Sheridan, K. V., and Trent, G. H.: 1959, in Paris Symp. Radio Astron. (ed. by Bracewell, R. N.), p. 176, Stanford University Press.Google Scholar
Zaitsev, V. V.: 1968, Astron. Zh. 45, 766; 1969, Sov. Astron. 12, 610.Google Scholar
Zheleznyakov, V. V. and Trakhtengerts, V. Yu.: 1965, Astron. Zh. 42, 1005 = Sov. Astron. 9, 775, 1966.Google Scholar
Zheleznyakov, V. V. and Zaitsev, V. V.: 1968, Astron. Zh. 45, 19; 1968, Sov. Astron. – A. J. 12, 14.Google Scholar