Hostname: page-component-77c89778f8-cnmwb Total loading time: 0 Render date: 2024-07-18T20:31:22.328Z Has data issue: false hasContentIssue false

27. On the radiant distribution of sporadic meteors

Published online by Cambridge University Press:  14 August 2015

N. Carrara
Affiliation:
Centro Microonde of Consiglio Nazionale delle Ricerche, Florence, Italy
A. Consortini
Affiliation:
Centro Microonde of Consiglio Nazionale delle Ricerche, Florence, Italy
L. Ronchi
Affiliation:
Centro Microonde of Consiglio Nazionale delle Ricerche, Florence, Italy

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A research is described which had the purpose of deriving information about the physics and astronomy of sporadic meteors from the range distribution of radar echoes from meteor trails experimentally observed under given conditions.

The method is based on the comparison of the experimental distribution with a number of different theoretical distributions, corresponding to different sets of assumptions about the characteristics of sporadic meteors and the law of trail formation.

The quantities which can be derived by this method are: (1) the distribution of heliocentric radiants, (2) the type of meteors (stone, iron, dustballs), (3) the distribution of heliocentric velocities.

In the present paper are described the results of the first part of the theoretical computations. Evidence is obtained that, in order to fit the experimental curve, both the uniform distribution of heliocentric radiants over the celestial sphere and in the plane of the ecliptic must be taken into account.

Type
Session 5
Copyright
Copyright © Reidel 1968 

References

Burlamacchi, P. et al. (1965) Centro Microonde Rep., No. 20, 1.5.Google Scholar
Carrara, N. (1966) Atti Fond. G. Ronchi, 21, 131.Google Scholar
Carrara, N., Checcacci, P.F., Ronchi, L. (1960a) Proc. I.R.E., 48, 2031.Google Scholar
Carrara, N., Checcacci, P.F., Ronchi, L. (1962) Nuovo Cim., 24, 145.CrossRefGoogle Scholar
Carrara, N., Checcacci, P.F., Consortini, A., Ronchi, L. (1960b) Alta Frequenza, 29, 615.Google Scholar
Carrara, N., Checcacci, P.F., Consortini, A., Ronchi, L. (1965) Nuovo Cim. Suppl., 3, 1029.Google Scholar
Carrara, N., Consortini, A., De Langer, M.E., Ronchi, L. (1966a) Nuovo Cim., 43B, 186.Google Scholar
Carrara, N., Consortini, A., De Langer, M.E., Ronchi, L. (1966b) Atti Fond. G. Ronchi, 21, 422.Google Scholar
Carrara, N., Consortini, A., De Langer, M.E., Ronchi, L. (1967) Centro Microonde Rep., No. 55, 1.9.Google Scholar
Handbook of Geophysics (1960) Macmillan Co., New York.Google Scholar
Kaiser, T.R. (1953) Phil. Mag. Suppl., 2, 495.Google Scholar
Kaiser, T.R. (1954a) Mon. Not. R. astr. Soc., 114, 39.CrossRefGoogle Scholar
Kaiser, T.R. (1954b) Mon. Not. R. astr. Soc., 114, 52.Google Scholar
Kaiser, T.R. (1960) Mon. Not. R. astr. Soc., 121, 284.Google Scholar
Kaiser, T.R. (1961) Mon. Not. R. astr. Soc., 123, 265.CrossRefGoogle Scholar
Öpik, E.J. (1958) Physics of Meteor Flight in the Atmosphere, Interscience Publishers, New York.Google Scholar
Verniani, F. (1964) Nuovo Cim., 33, 1173.Google Scholar
Verniani, F., Hawkins, G.S. (1964) Astrophys. J., 140, 1590.Google Scholar
Verniani, F., Hawkins, G.S. (1965) Harvard Radio Meteor Project Rep., No. 12.Google Scholar