Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-28T15:15:01.431Z Has data issue: false hasContentIssue false

PUPILLOMETRY IN LINGUISTIC RESEARCH

AN INTRODUCTION AND REVIEW FOR SECOND LANGUAGE RESEARCHERS

Published online by Cambridge University Press:  22 August 2017

Jens Schmidtke*
Affiliation:
German-Jordanian University, Amman, Jordan
*
*Correspondence concerning this article should be addressed to Jens Schmidtke, P.O. Box 35247, Amman 11180, Jordan. E-mail: schmi474@msu.edu

Abstract

It has been known since at least the 1960s that small changes in pupil diameter in response to a mental task are indicative of processing effort associated with this task. More recently, with the advent of modern eye-trackers, which also measure the pupil diameter, pupillometry has been “rediscovered” by language researchers and the method has since been used in many different subdisciplines of linguistics. This article gives a nonexhaustive overview about recent linguistic research with the purpose of introducing researchers in the field of second language acquisition (SLA) to pupillometry. In addition, the article discusses things to consider when designing an experiment and how pupil data can be analyzed. The range of possibilities in which pupillometry can be used in experimental SLA research makes it a welcome addition to other online methods such as eye-tracking and event-related potentials.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aston-Jones, G., & Cohen, J. D. (2005). An integrative theory of locus coeruleus-norepinephrine function: Adaptive gain and optimal performance. Annual Review of Neuroscience, 28, 403–50. doi: 10.1146/annurev.neuro.28.061604.135709CrossRefGoogle ScholarPubMed
Aston-Jones, G., Rajkowski, J., & Cohen, J. (1999). Role of locus coeruleus in attention and behavioral flexibility. Biological Psychiatry, 46, 13091320. doi: 10.1016/S0006-3223(99)00140-7CrossRefGoogle ScholarPubMed
Beatty, J. (1982). Task-evoked pupillary responses, processing load, and the structure of processing resources. Psychological Bulletin, 91, 276292.CrossRefGoogle ScholarPubMed
Beatty, J., & Lucero-Wagoner, B. (2000). The pupillary system. In Cacioppo, J. T., Tassinary, L. G., & Berntson, G. G. (Eds.), Handbook of psychophysiology (2nd ed., pp. 142162). Cambridge, UK: Cambridge University Press.Google Scholar
Ben-Nun, Y. (1986). The use of pupillometry in the study of on-line verbal processing: Evidence for depths of processing. Brain and Language, 28, 111.CrossRefGoogle Scholar
Bradlow, A. R., & Pisoni, D. B. (1999). Recognition of spoken words by native and non-native listeners: Talker-, listener-, and item-related factors. Journal of the Acoustical Society of America, 106, 20742085. doi: 10.1121/1.427952CrossRefGoogle ScholarPubMed
Bradshaw, J. L. (1969). Background light intensity and pupillary response in a reaction time task. Psychonomic Science, 14, 271272.CrossRefGoogle Scholar
Brisson, J., Mainville, M., Mailloux, D., Beaulieu, C., Serres, J., & Sirois, S. (2013). Pupil diameter measurement errors as a function of gaze direction in corneal reflection eyetrackers. Behavior Research Methods, 45, 13221331. doi: 10.3758/s13428-013-0327-0CrossRefGoogle ScholarPubMed
Chapman, C., Oka, S., Bradshaw, D. H., Jacobson, R. C., & Donaldson, G. W. (1999). Phasic pupil dilation response to noxious stimulation in normal volunteers: Relationship to brain evoked potentials and pain report. Psychophysiology, 36, 4452. doi: 10.1017/S0048577299970373CrossRefGoogle ScholarPubMed
Chapman, L., & Hallowell, B. (2015). A novel pupillometric method for indexing word difficulty in individuals with and without aphasia. Journal of Speech, Language, and Hearing Research, 58, 15081520. doi: 10.1044/2015CrossRefGoogle ScholarPubMed
Cohen Hoffing, R., & Seitz, A. (2015). Pupillometry as a glimpse into the neurochemical basis of human memory encoding. Journal of Cognitive Neuroscience, 27, 765774. doi: 10.1162/jocnCrossRefGoogle Scholar
Conklin, K., & Pellicer-Sanchez, A. (2016). Using eye-tracking in applied linguistics and second language research. Second Language Research, 32, 453467. doi: 10.1177/0267658316637401CrossRefGoogle Scholar
Demberg, V., & Sayeed, A. (2016). The frequency of rapid pupil dilations as a measure of linguistic processing difficulty. PLoS ONE, 11, 129. doi: 10.1371/journal.pone.0146194CrossRefGoogle ScholarPubMed
Duñabeitia, J. A., & Costa, A. (2014). Lying in a native and foreign language. Psychonomic Bulletin and Review, 22, 11241129. doi: 10.3758/s13423-014-0781-4CrossRefGoogle Scholar
Eckstein, M. K., Guerra-Carrillo, B., Singley, A. T. M., & Bunge, S. A. (2016). Beyond eye gaze: What else can eyetracking reveal about cognition and cognitive development? Developmental Cognitive Neuroscience, 25, 6991. doi: 10.1016/j.dcn.2016.11.001CrossRefGoogle ScholarPubMed
Ellis, N. C. (2005). At the interface: Dynamic interactions of explicit and implicit language knowledge. Studies in Second Language Acquisition, 27, 305352. doi: 10.1017/S027226310505014XCrossRefGoogle Scholar
Ellis, R. (2005). Measuring implicit and explicit knowledge of a second language: A psychometric study. Studies in Second Language Acquisition, 27, 141172. doi: 10.1017/S0272263105050096CrossRefGoogle Scholar
Engelhardt, P. E., Ferreira, F., & Patsenko, E. G. (2010). Pupillometry reveals processing load during spoken language comprehension. Quarterly Journal of Experimental Psychology, 63, 639645. doi: 10.1080/17470210903469864CrossRefGoogle ScholarPubMed
Foote, R. (2015). The storage and processing of morphologically complex words in L2 Spanish. Studies in Second Language Acquisition, 133. doi: 10.1017/S0272263115000376Google Scholar
Gagl, B., Hawelka, S., & Hutzler, F. (2011). Systematic influence of gaze position on pupil size measurement: analysis and correction. Behavior Research Methods, 43, 11711181. doi: 10.3758/s13428-011-0109-5CrossRefGoogle ScholarPubMed
Geller, J., Still, M. L., & Morris, A. L. (2015). Eyes wide open: Pupil size as a proxy for inhibition in the masked-priming paradigm. Memory and Cognition, 44, 554564. doi: 10.3758/s13421-015-0577-4CrossRefGoogle Scholar
Gilzenrat, M., Nieuwenhuis, S., Jepma, M., & Cohen, J. D. (2010). Pupil diameter tracks changes in control state predicted by the adaptive gain theory of locus coeruleus function. Cognitive, Affective, and Behavioral Neuroscience, 10, 252269. doi: 10.3758/CABN.10.2.252.PupilCrossRefGoogle ScholarPubMed
Godfroid, A., Loewen, S., Jung, S., Park, J.-H., Gass, S., & Ellis, R. (2015). Timed and untimed grammaticality judgments measure distinct types of knowledge. Studies in Second Language Acquisition, 37, 269297. doi: 10.1017/S0272263114000850CrossRefGoogle Scholar
Goldinger, S. D., & Papesh, M. H. (2012). Pupil dilation reflects the creation and retrieval of memories. Current Directions in Psychological Science, 21, 9095. doi: 10.1177/0963721412436811CrossRefGoogle ScholarPubMed
Gollan, T. H., Montoya, R. I., Cera, C., & Sandoval, T. C. (2008). More use almost always means a smaller frequency effect: Aging, bilingualism, and the weaker links hypothesis. Journal of Memory and Language, 58, 787814. doi: 10.1016/j.jml.2007.07.001CrossRefGoogle Scholar
Granholm, E., & Steinhauer, S. R. (2004). Pupillometric measures of cognitive and emotional processes. International Journal of Psychophysiology: Official Journal of the International Organization of Psychophysiology, 52, 16. doi: 10.1016/j.ijpsycho.2003.12.001CrossRefGoogle ScholarPubMed
Guasch, M., Ferré, P., & Haro, J. (2016). Pupil dilation is sensitive to the cognate status of words: Further evidence for non-selectivity in bilingual lexical access. Bilingualism: Language and Cognition, 20, 4954. doi: 10.1017/S1366728916000651CrossRefGoogle Scholar
Hardison, D. M. (2005). Second-language spoken word identification: Effects of perceptual training, visual cues, and phonetic environment. Applied Psycholinguistics, 26, 579596.CrossRefGoogle Scholar
Haro, J., Guasch, M., Vallès, B., & Ferré, P. (2016). Is pupillary response a reliable index of word recognition? Evidence from a delayed lexical decision task. Behavior Research Methods. Advance online publication. doi: 10.3758/s13428-016-0835-9Google Scholar
Hayes, T. R., & Petrov, A. A. (2015). Mapping and correcting the influence of gaze position on pupil size measurements. Behavior Research Methods, 48, 510527. doi: 10.3758/s13428-015-0588-xCrossRefGoogle Scholar
Heinrich, W. (1896). Die Aufmerksamkeit und die Funktion der Sinnesorgane. Zeitschrift Für Psychologie Und Physiologie Der Sinnesorgane, 9, 342388.Google Scholar
Hess, E. H., & Polt, J. M. (1964). Pupil size in relation to mental activity during simple problem-solving. Science, 143, 11901192.CrossRefGoogle ScholarPubMed
Hochmann, J.-R., & Papeo, L. (2014). The invariance problem in infancy: A pupillometry study. Psychological Science, 25, 20382046. doi: 10.1177/0956797614547918CrossRefGoogle ScholarPubMed
Hyönä, J., Tommola, J., & Alaja, A. (1995). Pupil dilation as a measure of processing load in simultaneous interpretation and other language tasks. The Quarterly Journal of Experimental Psychology Section A: Human Experimental Psychology, 43, 598612.CrossRefGoogle Scholar
Ivanova, I., & Costa, A. (2008). Does bilingualism hamper lexical access in speech production? Acta Psychologica, 127, 277–88. doi: 10.1016/j.actpsy.2007.06.003CrossRefGoogle ScholarPubMed
Jegerski, J., & VanPatten, B. (2014). Research methods in second language psycholinguistics. London: Routledge.Google Scholar
Joshi, S., Li, Y., Kalwani, R. M., & Gold, J. I. (2016). Relationships between pupil diameter and neuronal activity in the locus coeruleus, colliculi, and cingulate cortex. Neuron, 89, 221234. doi: 10.1016/j.neuron.2015.11.028CrossRefGoogle ScholarPubMed
Just, M. A., & Carpenter, P. A. (1993). The intensity dimension of thought: Pupillometric indices of sentence processing. Canadian Journal of Experimental Psychology, 47, 310339.CrossRefGoogle ScholarPubMed
Kahneman, D., & Beatty, J. (1966). Pupil diameter and load on memory. Science, 154, 15831585.CrossRefGoogle ScholarPubMed
Keating, G. D., & Jegerski, J. (2015). Experimental designs in sentence processing research: A methodological review and user’s guide. Studies in Second Language Acquisition, 37, 132. doi: 10.1017/S0272263114000187CrossRefGoogle Scholar
Klingner, J., Tversky, B., & Hanrahan, P. (2011). Effects of visual and verbal presentation on cognitive load in vigilance, memory, and arithmetic tasks. Psychophysiology, 48, 323332. doi: 10.1111/j.1469-8986.2010.01069.xCrossRefGoogle ScholarPubMed
Koch, X., & Janse, E. (2016). Speech rate effects on the processing of conversational speech across the adult life span. Journal of the Acoustical Society of America, 139, 16181636. doi: 10.1121/1.4944032CrossRefGoogle ScholarPubMed
Kohn, M., & Clynes, M. (1969). Color dynamics of the pupil. Annals of the New York Academy of Sciences, 156, 931950. doi: 10.1111/j.1749-6632.1969.tb14024.xCrossRefGoogle ScholarPubMed
Kramer, S. E., Lorens, A., Coninx, F., Zekveld, A. A., Piotrowska, A., & Skarzynski, H. (2013). Processing load during listening: The influence of task characteristics on the pupil response. Language and Cognitive Processes, 28, 426442. doi: 10.1080/01690965.2011.642267CrossRefGoogle Scholar
Kuchinke, L., , M. L.-H., Hofmann, M., & Jacobs, A. M. (2007). Pupillary responses during lexical decisions vary with word frequency but not emotional valence. International Journal of Psychophysiology, 65, 132–40. doi: 10.1016/j.ijpsycho.2007.04.004CrossRefGoogle Scholar
Kuchinsky, S. E., Ahlstrom, J. B., Vaden, K. I., Cute, S. L., Humes, L. E., Dubno, J. R., et al. . (2013). Pupil size varies with word listening and response selection difficulty in older adults with hearing loss. Psychophysiology, 50, 2334. doi: 10.1111/j.1469-8986.2012.01477.xCrossRefGoogle Scholar
Laeng, B., Ørbo, M., Holmlund, T., & Miozzo, M. (2011). Pupillary Stroop effects. Cognitive Processing, 12, 1321. doi: 10.1007/s10339-010-0370-zCrossRefGoogle ScholarPubMed
Laeng, B., Sirois, S., & Gredeback, G. (2012). Pupillometry: A window to the preconscious? Perspectives on Psychological Science, 7, 1827. doi: 10.1177/1745691611427305CrossRefGoogle ScholarPubMed
Leal, T., Slabakova, R., & Farmer, T. A. (2016). The fine-tuning of linguistic expectations over the course of L2 learning. Studies in Second Language Acquisition. Advance online publication. doi: 10.1017/S0272263116000164Google Scholar
Ledoux, K., Coderre, E., Bosley, L., Buz, E., Gangopadhyay, I., & Gordon, B. (2016). The concurrent use of three implicit measures (eye movements, pupillometry, and event-related potentials) to assess receptive vocabulary knowledge in normal adults. Behavior Research Methods, 48, 285305. doi: 10.3758/s13428-015-0571-6CrossRefGoogle ScholarPubMed
McGarrigle, R., Dawes, P., Stewart, A. J., Kuchinsky, S. E., & Munro, K. J. (2016). Pupillometry reveals changes in physiological arousal during a sustained listening task. Psychophysiology, 54, 193203. doi: 10.1111/psyp.12772CrossRefGoogle ScholarPubMed
Meador, D., Flege, J. E., & Mackay, R. (2000). Factors affecting the recognition of words in a second language. Bilingualism: Language and Cognition, 3, 5567.CrossRefGoogle Scholar
Murphy, P. R., O’Connell, R. G., O’Sullivan, M., Robertson, I. H., & Balsters, J. H. (2014). Pupil diameter covaries with BOLD activity in human locus coeruleus. Human Brain Mapping, 35, 41404154. doi: 10.1002/hbm.22466CrossRefGoogle ScholarPubMed
Nassar, M. R., Rumsey, K. M., Wilson, R. C., Parikh, K., Heasly, B., & Gold, J. I. (2012). Rational regulation of learning dynamics by pupil-linked arousal systems. Nature Neuroscience, 15, 1040–6. doi: 10.1038/nn.3130CrossRefGoogle ScholarPubMed
Papesh, M. H., & Goldinger, S. D. (2012). Pupil-BLAH-metry: Cognitive effort in speech planning reflected by pupil dilation. Attention, Perception and Psychophysics, 74, 754–65. doi: 10.3758/s13414-011-0263-yCrossRefGoogle ScholarPubMed
Piquado, T., Isaacowitz, D., & Wingfield, A. (2010). Pupillometry as a measure of cognitive effort in younger and older adults. Psychophysiology, 47, 560569. doi: 10.1111/j.1469-8986.2009.00947.xCrossRefGoogle ScholarPubMed
Pomplun, M., & Sunkara, S. (2003). Pupil dilation as an indicator of cognitive workload in human-computer interaction. In Harris, D., Duffy, V., Smith, M., & Stephanidis, C. (Eds.), Human-centered computing: Cognitive, social and ergonomic aspects. Vol. 3 of the Proceedings of the 10th International Conference on Human-Computer Interaction (pp. 542546). Crete, Greece.Google Scholar
Runnqvist, E., Strijkers, K., Sadat, J., & Costa, A. (2011). On the temporal and functional origin of l2 disadvantages in speech production: A critical review. Frontiers in Psychology, 2, 379. doi: 10.3389/fpsyg.2011.00379CrossRefGoogle ScholarPubMed
Samuels, E., & Szabadi, E. (2008a). Functional neuroanatomy of the noradrenergic locus coeruleus: Its roles in the regulation of arousal and autonomic function part I: Principles of functional organisation. Current Neuropharmacology, 6, 235253. doi: 10.2174/157015908785777229CrossRefGoogle Scholar
Samuels, E., & Szabadi, E. (2008b). Functional neuroanatomy of the noradrenergic locus coeruleus: Its roles in the regulation of arousal and autonomic function part II: Physiological and pharmacological manipulations and pathological alterations of locus coeruleus activity in humans. Current Neuropharmacology, 6, 254285. doi: 10.2174/157015908785777193CrossRefGoogle Scholar
Sara, S. J. (2009). The locus coeruleus and noradrenergic modulation of cognition. Nature Reviews Neuroscience, 10, 211223. doi: 10.1038/nrn2573CrossRefGoogle ScholarPubMed
Sara, S. J., & Bouret, S. (2012). Orienting and reorienting: The locus coeruleus mediates cognition through arousal. Neuron, 76, 130141. doi: 10.1016/j.neuron.2012.09.011CrossRefGoogle ScholarPubMed
Scheepers, C., Mohr, S., Fischer, M. H., & Roberts, A. M. (2013). Listening to limericks: A pupillometry investigation of perceivers’ expectancy. PLoS ONE, 8, e74986. doi: 10.1371/journal.pone.0074986CrossRefGoogle ScholarPubMed
Schmidtke, J. (2014). Second language experience modulates word retrieval effort in bilinguals: Evidence from pupillometry. Frontiers in Psychology, 5, 116. doi: 10.3389/fpsyg.2014.00137CrossRefGoogle ScholarPubMed
Schmitt, N. (2014). Size and depth of vocabulary knowledge: What the research shows. Language Learning, 64, 913951. doi: 10.1111/lang.12077CrossRefGoogle Scholar
Sirois, S., & Brisson, J. (2014). Pupillometry. Wiley Interdisciplinary Reviews: Cognitive Science, 5, 679692. doi: 10.1002/wcs.1323Google ScholarPubMed
Tamási, K., McKean, C., Gafos, A., Fritzsche, T., & Höhle, B. (2016). Pupillometry registers toddlers’ sensitivity to degrees of mispronunciation. Journal of Experimental Child Psychology, 153, 140148. doi: 10.1016/j.jecp.2016.07.014CrossRefGoogle ScholarPubMed
Tanenhaus, M. K., Spivey-Knowlton, M. J., Eberhard, K. M., & Sedivy, J. C. (1995). Integration of visual and linguistic information in spoken language comprehension. Science, 268, 16321634.CrossRefGoogle ScholarPubMed
Tromp, J., Hagoort, P., & Meyer, A. S. (2015). Pupillometry reveals increased pupil size during indirect request comprehension. Quarterly Journal of Experimental Psychology, 69, 10931108. doi: 10.1080/17470218.2015.1065282CrossRefGoogle ScholarPubMed
VanPatten, B., & Smith, M. (2014). Aptitude as grammatical sensitivity and the initial stages of learning Japanese as a L2. Studies in Second Language Acquisition, 37, 135165. doi: 10.1017/S0272263114000345CrossRefGoogle Scholar
Wagner, A. E., Toffanin, P., & Baskent, D. (2016). The timing and effort of lexical access in natural and degraded speech. Frontiers in Psychology, 7, 114. doi: 10.3389/fpsyg.2016.00398CrossRefGoogle ScholarPubMed
Wang, C. A., & Munoz, D. P. (2015). A circuit for pupil orienting responses: Implications for cognitive modulation of pupil size. Current Opinion in Neurobiology, 33, 134140. doi: 10.1016/j.conb.2015.03.018CrossRefGoogle ScholarPubMed
Weber, A., & Broersma, M. (2012). Spoken word recognition in second language acquisition. In Chapelle, C. A. (Ed.), The encyclopedia of applied linguistics (pp. 53685375). Bognor Regis, UK: Wiley-Blackwell. doi: 10.1002/9781405198431Google Scholar
Wendt, D., Dau, T., & Hjortkjaer, J. (2016). Impact of background noise and sentence complexity on processing demands during sentence comprehension. Frontiers in Psychology, 7, 112. doi: 10.3389/fpsyg.2016.00345CrossRefGoogle ScholarPubMed
Zekveld, A. A., Kramer, S. E., & Festen, J. M. (2010). Pupil response as an indication of effortful listening: the influence of sentence intelligibility. Ear and Hearing, 31, 480490. doi: 10.1097/AUD.0b013e3181d4f251CrossRefGoogle ScholarPubMed
Zellin, M., Pannekamp, A., Toepel, U., & van der Meer, E. (2011). In the eye of the listener: Pupil dilation elucidates discourse processing. International Journal of Psychophysiology: Official Journal of the International Organization of Psychophysiology, 81, 133141. doi: 10.1016/j.ijpsycho.2011.05.009CrossRefGoogle ScholarPubMed
Supplementary material: File

Schmidtke supplementary material

Schmidtke supplementary material 1

Download Schmidtke supplementary material(File)
File 128.7 KB