Hostname: page-component-7479d7b7d-qlrfm Total loading time: 0 Render date: 2024-07-12T06:18:21.510Z Has data issue: false hasContentIssue false

Amphibia: Disparity and Diversification of Early Tetrapods

Published online by Cambridge University Press:  17 July 2017

Michael A. Fracasso*
Affiliation:
Connecticut Department of Environmental Protection, 79 Elm Street, Hartford, Connecticut 06106 and Department of Geology and Geophysics, University of Connecticut, Storrs, Connecticut 06269

Extract

Fossils conventionally classified as amphibians comprise a diverse, paraphyletic assemblage of roughly 15 distinctive lineages (=clades; Figure 1) of non–amniote tetrapods whose phylogenetic interrelationships continue to defy resolution (Carroll, 1992; Figure 2). The historical accumulation of morphological data, new paleontological discoveries, better understanding of characters and transformation series, and refinement of rigorous cladistic analytical methodology have stimulated a resurgence of interest in the phylogenetics of early tetrapods (Bolt, 1991; Bolt and Lombard, 1991; Clack, 1988, 1991; Duellman, 1988; Gauthier et al., 1988b; Lombard and Bolt, 1988; Milner, 1988, 1990, 1993; Panchen, 1991; Panchen and Smithson, 1987, 1988; Smithson, 1985; Trueb and Cloutier, 1991a, 1991b). However, most investigations have done little more than substantiate the distinctiveness of the major non–amniote tetrapod clades and clarify within–clade relationships. Differences in parsimony between alternative phylogenies proposed for the early lineages are generally too minor to consider any as strongly corroborated (Carroll, 1990, 1992; e.g. Panchen and Smithson, 1988).

Type
Research Article
Copyright
Copyright © 1994 Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baird, D. 1964. The aïstopod amphibians surveyed. Breviora, 206: 117.Google Scholar
Beaumont, E. H. 1977. Cranial morphology of the Loxommatidae (Amphibia: Labyrinthodontia). Philosophical Transactions of the Royal Society of London, Series B, 280: 29101.Google Scholar
Beerbower, J. R. 1963. Morphology, paleoecology, and phylogeny of the Permo-Pennsylvanian amphibian Diploceraspis . Bulletin of the Museum of Comparative Zoology, 130: 31108.Google Scholar
Benton, M. J. 1990. Vertebrate Palaeontology. Unwin Hyman, Boston. 377p.Google Scholar
Benton, M. J. 1991. Amniote phylogeny, p. 317330. In Schultze, H.-P. and Trueb, L. (eds.), Origins of the Higher Groups of Tetrapods: Controversy and Consensus. Cornell University Press, Ithaca, New York.Google Scholar
Berman, D. S., Sumida, S. S., and Lombard, R. E. 1992. Reinterpretation of the temporal and occipital regions in Diadectes and the relationships of diadectomorphs. Journal of Paleontology, 66: 481498.Google Scholar
Blatt, H., and Jones, R. L. 1975. Proportions of exposed igneous, metamorphic, and sedimentary rocks. Geological Society of America Bulletin, 86: 10851088.Google Scholar
Bolt, J. R. 1969. Lissamphibian origins: possible protolissamphibian from the Lower Permian of Oklahoma. Science, 166: 888891.CrossRefGoogle ScholarPubMed
Bolt, J. R. 1977. Dissorophoid relationships and ontogeny, and the origin of the Lissamphibia. Journal of Paleontology, 51: 235249.Google Scholar
Bolt, J. R. 1991. Lissamphibian origins, p. 194222. In Schultze, H.-P. and Trueb, L. (eds.), Origins of the Higher Groups of Tetrapods: Controversy and Consensus. Cornell University Press, Ithaca, NY.Google Scholar
Bolt, J. R., and Lombard, R. E. 1985. Evolution of the amphibian tympanic ear and the origin of frogs. Biological Journal of the Linnean Society, 24: 8399.Google Scholar
Bolt, J. R., and Lombard, R. E. 1991. Nature and quality of the fossil evidence for otic evolution in early tetrapods, p. 377403. In Webster, D. B., Fay, R. R., and Popper, A. N. (eds.), The Evolutionary Biology of Hearing. Springer-Verlag, New York.Google Scholar
Bolt, J. R., and Wassersug, R. J. 1975. Functional morphology of the skull in Lysorophus: a snakelike Paleozoic amphibian (Lepospondyli). Paleobiology, 1: 320332.Google Scholar
Boy, J. A. 1974. Die Larven der rhachitomen Amphibien (Amphibia: Temnospondyli; Karbon-Trias). Palaontologisches Zeitschschrift, 48: 236268.CrossRefGoogle Scholar
Carroll, R. L. 1969. A new family of Carboniferous amphibians. Palaeontology, 12: 537548.Google Scholar
Carroll, R. L. 1982. Early evolution of reptiles. Annual Review of Ecology and Systematics, 13: 87109.Google Scholar
Carroll, R. L. 1988. Vertebrate Paleontology and Evolution. W. H. Freeman and Company, New York. 698p.Google Scholar
Carroll, R. L. 1990. A tiny microsaur from the Lower Permian of Texas: size constraints in Palaeozoic tetrapods. Palaeontology, 33: 893909.Google Scholar
Carroll, R. L. 1992. The primary radiation of terrestrial vertebrates. Annual Review of Earth and Planetary Sciences, 20: 4584.Google Scholar
Carroll, R. L. and Gaskill, P. 1978. The Order Microsauria. American Philosophical Society Memoirs, 126: 1211.Google Scholar
Clack, J. A. 1987. Pholiderpeton scutigerum Huxley, an amphibian from the Yorkshire Coal Measures. Philosophical Transactions of the Royal Society of London Series B, 318: 1107.Google Scholar
Clack, J. A. 1988. New material of the early tetrapod Acanthostega from the Upper Devonian of East Greenland. Palaeontology, 31: 699724.Google Scholar
Clack, J. A. 1989. Discovery of the earliest-known tetrapod stapes. Nature, 342: 425427.CrossRefGoogle ScholarPubMed
Clack, J. A. 1991. The stapes of Acanthostega gunnari and the role of the stapes in early tetrapods, p. 405420. In Webster, D. B., Fay, R. R., and Popper, A. N. (eds.), The Evolutionary Biology of Hearing. Springer-Verlag, New York.Google Scholar
Clack, J. A. and Holmes, R. 1988. The braincase of the anthracosaur Archeria crassidisca with comments on the interrelationships of primitive tetrapods. Palaeontology, 31: 85107.Google Scholar
Coates, M. I., and Clack, J. A. 1990. Polydactyly in the earliest known tetrapod limbs. Nature, 347: 6669.Google Scholar
Coates, M. I., and Clack, J. A. 1991. Fish-like gills and breathing in the earliest known tetrapod. Nature, 352:234236.Google Scholar
Colbert, E. H., and Morales, M. 1991. Evolution of the Vertebrates (4th ed.). John Wiley and Sons, Inc., New York. 470 p.Google Scholar
Cruickshank, A. R. I., and Skews, B. W. 1980. The functional significance of nectridean tabular horns (Amphibia: Lepospondyli). Proceedings of the Royal Society of London, Series B, 209:513537.Google Scholar
De Queiroz, K., and Gauthier, J. 1992. Phylogenetic taxonomy. Annual Review of Ecology and Systematics, 23: 449480.Google Scholar
DiMichele, W. A., and Hook, R. W. 1992. Paleozoic terrestrial ecosystems, p. 206325. In Behrensmeyer, A. K., Damuth, J. D., DiMichele, W. A., Potts, R., Sues, H.-D., and Wing, S. L. (eds.), Terrestrial Ecosystems Through Time. University of Chicago Press, Chicago.Google Scholar
Duellman, W. E. 1988. Evolutionary relationships of the Amphibia, p. 1334. In Fritzsch, B., Ryan, M. J., Wilczynski, W., Hetherington, T. E., and Walkowiak, W. (eds.), The Evolution of the Amphibian Auditory System. Wiley-Interscience, New York.Google Scholar
Duellman, W. E. and Trueb, L. 1986. Biology of Amphibians. McGraw-Hill Book Co., New York. 670p.Google Scholar
Eldredge, N., and Cracraft, J. 1980. Phylogenetic Patterns and the Evolutionary Process. Columbia University Press, New York. 349p.Google Scholar
Fracasso, M. A. 1983. Cranial osteology, functional morphology, systematics and paleoenvironment of Limnoscelis paludis Williston. Ph.D. dissertation, 624 p., Yale University, New Haven.Google Scholar
Fracasso, M. A. 1987. Braincase of Limnoscelis paludis Williston. Peabody Museum of Natural History (Yale) Postilla, 201: 122.Google Scholar
Gaffney, E. S. 1979. Tetrapod monophyly: a phylogenetic analysis. Bulletin of the Carnegie Museum of Natural History, 13: 92102.Google Scholar
Gardiner, B. G. 1982. Tetrapod classification. Zoological Journal of the Linnaean Society, 74: 207232.CrossRefGoogle Scholar
Gardiner, B. G. 1983. Gnathostome vertebrae and the classifications of the Amphibia. Zoological Journal of the Linnaean Society, 79: 159.CrossRefGoogle Scholar
Gauthier, J., Kluge, A. G., and Rowe, T. 1988a. Amniote phylogeny and the importance of fossils. Cladistics, 4: 105209.CrossRefGoogle ScholarPubMed
Gauthier, J., Kluge, A. G., and Rowe, T. 1988b. The early evolution of the Amniota, p. 103156. In Benton, M. J. (ed.), The Phylogeny and Classification of the Tetrapods. Volume 1: Amphibians, Reptiles, Birds. Oxford University Press, New York.Google Scholar
Godfrey, S. J. 1989a. Ontogenetic changes in the skull of the Carboniferous tetrapod Greererpeton morani Romer, 1969. Philosophical Transactions of the Royal Society of London, Series B, 323: 135153.Google Scholar
Godfrey, S. J. 1989b. The postcranial skeletal anatomy of the Carboniferous tetrapod Greererpeton morani Romer, 1969. Philosophical Transactions of the Royal Society of London, Series B, 323: 75133.Google Scholar
Gould, S. J. 1989. Wonderful Life. The Burgess Shale and the Nature of History. W. W. Norton and Co., New York. 347p.Google Scholar
Gould, S. J. 1991a. The disparity of the Burgess Shale arthropod fauna and the limits of cladistic analysis: why we must strive to quantify morphospace. Paleobiology, 17: 411423.CrossRefGoogle Scholar
Gould, S. J. 1991b. Eight (or fewer) little piggies. Natural History, 1991: 2229.Google Scholar
Gregor, C B. 1985. The mass-age distribution of Phanerozoic sediments, p. 284289. In Snelling, N. J. (ed.), The Chronology of the Geological Record. Geological Society of London, London.Google Scholar
Harland, W. B., Armstrong, R. L., Cox, A. V., Craig, L. E., Smith, A. G., and Smith, D. G. 1990. A Geologic Time Scale 1989. Cambridge University Press, New York. 263p.Google Scholar
Heaton, M. J. 1980. The Cotylosauria: a reconsideration of a group of archaic tetrapods, p. 497551. In Panchen, A. L. (ed.), The Terrestrial Environment and the Origin of Land Vertebrates. Academic Press, New York.Google Scholar
Holmes, R. 1984. The Carboniferous amphibian Proterogyrinus scheeli Romer, and the early evolution of tetrapods. Philosophical Transactions of the Royal Society of London B, 306: 431524.Google Scholar
Holmes, R. and Carroll, R. L. 1977. Temnospondyl amphibian from the Mississippian of Scotland. Museum of Comparative Zoology (Harvard) Bulletin, 147: 489511.Google Scholar
Hook, R. W. 1983. Colosteus scutellatus (Newberry), a primitive temnospondyl amphibian from the middle Pennsylvanian of Linton, Ohio. American Museum Novitates, 2770: 141.Google Scholar
Knoll, A. H., Niklas, K. J., and Tiffney, B. J. 1979. Phanerozoic land-plant diversity in North America. Science, 206: 14001402.Google Scholar
Lebedev, O. A. 1984. The first find of a Devonian tetrapod vertebrate in the USSR [in Russian]. Doklady Akademii Nauk SSSR, Palaeontology, 278: 14701473.Google Scholar
Lebedev, O. A. 1990. Tulerpeton, l'animal à six doights. La Recherche, 225: 12741275.Google Scholar
Lebedev, O. A. and Clack, J. A. 1993. Upper Devonian tetrapods from Andreyevka, Tula region, Russia. Palaeontology, 36: 721734.Google Scholar
Lombard, R. E., and Bolt, J. R. 1979. Evolution of the tetrapod ear: an analysis and reinterpretation. Biological Journal of the Linnaean Society, 11: 1976.Google Scholar
Lombard, R. E., and Bolt, J. R. 1988. Evolution of the stapes in Paleozoic tetrapods: conservative and radical hypotheses, p. 3768. In Fritzsch, B., Ryan, M. J., Wilczynski, W., Hetherington, T. E., and Walkowiak, W. (eds.), The Evolution of the Amphibian Auditory System. Wiley-Interscience, New York.Google Scholar
Maxwell, W. D. 1992. Permian and Early Triassic extinction of non-marine tetrapods. Palaeontology, 35: 571583.Google Scholar
Milner, A. C. 1980. A review of the Nectridea (Amphibia), p. 377405. In Panchen, A. L. (ed.), The Terrestrial Environment and the Origin of Land Vertebrates. Academic Press, New York.Google Scholar
Milner, A. C. 1988. The relationships and origin of living amphibians, p. 59102. In Benton, M. J. (ed.), The Phylogeny and Classification of the Tetrapods. Volume 1: Amphibians, Reptiles, Birds. Oxford University Press, New York.Google Scholar
Milner, A. C. 1990. The radiations of temnospondyl amphibians, p. 321349. In Taylor, P. D. and Larwood, G. P. (eds.), Major Evolutionary Radiations. Clarendon Press, Oxford.Google Scholar
Milner, A. C. 1993. Amphibian-Grade Tetrapoda, p. 665679. In Benton, M. J. (ed.), The Fossil Record 2. Chapman and Hall, New York.Google Scholar
Moss, J. L. 1972. Morphology and phylogenetic relationships of the Lower Permian tetrapod Tseajaia campi Vaughn (Amphibia: Seymouriamorpha). University of California Publications in Geological Science, 98: 172.Google Scholar
Niklas, K.J., Tiffney, B. H., and Knoll, A. H. 1980. Apparent changes in the diversity of fossil plants, p. 189. In Hecht, M. K., Steere, W. C., and Wallace, B. (eds.), Evolutionary Biology. Plenum Press, New York.Google Scholar
Olson, E. C. 1947. The family Diadectidae and its bearing on the classification of reptiles. Fieldiana: Geology, 11: 153.Google Scholar
Olson, E. C. 1950. The temporal region of the Permian reptile Diadectes . Fieldiana: Geology, 10: 6377.Google Scholar
Olson, E. C. 1951. Diplocaulus: a study in growth and variation. Fieldiana: Geology, 11: 57154.Google Scholar
Olson, E. C. 1952. The evolution of a Permian vertebrate chronofauna. Evolution, 6: 181196.Google Scholar
Olson, E. C. 1962. Late Permian terrestrial vertebrates, U.S.A. and U.S.S.R. Transactions of the American Philosophical Society, 52: 1224.CrossRefGoogle Scholar
Olson, E. C. 1965. Relationships of Seymouria, Diadectes, and Chelonia. American Zoologist, 5: 295306.CrossRefGoogle Scholar
Olson, E. C. 1966. Relationships of Diadectes . Fieldiana Geology, 14: 199227.Google Scholar
Olson, E. C. 1971. Vertebrate Paleozoology. Wiley-Interscience, New York. 839 p.Google Scholar
Olson, E. C. 1976. The exploitation of land by early tetrapods, p. 130. In Bellairs, A. and Cox, C. B. (eds.), Morphology and Biology of Reptiles. Academic Press, New York.Google Scholar
Panchen, A. L. 1970. Anthracosauria. Encyclopedia of Paleoherpetology Part 5A. Gustav Fischer Verlag, Portland. 84 p.Google Scholar
Panchen, A. L. 1972. The interrelationships of the earliest tetrapods, p. 6587. In Joysey, K. A. and Kemp, T. S. (eds.), Studies in Vertebrate Evolution. Winchester Press, New York.Google Scholar
Panchen, A. L. 1977. On Anthracosaurus russelli Huxley (Amphibia: Labyrinthodontia) and the Family Anthracosauridae. Philosophical Transactions of the Royal Society of London. B, 279: 447512.Google Scholar
Panchen, A. L. 1980. The origin and relationships of the anthracosaur amphibia from the Late Paleozoic, p. 319350. In Panchen, A. L. (ed.), The Terrestrial Environment and the Origin of Land Vertebrates. Academic Press, New York.Google Scholar
Panchen, A. L. 1985. On the amphibian Crassigyrinus scoticus Watson from the Carboniferous of Scotland. Philosophical Transactions of the Royal Society of London, Series B, 309: 505568.Google Scholar
Panchen, A. L. 1991. The early tetrapods: classification and the shapes of cladograms, p. 110144. In Schultze, H.-P. and Trueb, L. (eds.), Origins of the Higher Groups of Tetrapods: Controversy and Consensus. Cornell University Press, Ithaca, NY.Google Scholar
Panchen, A. L. and Smithson, T. R. 1987. Character diagnosis, fossils and the origin of tetrapods. Biological Reviews, 62: 341438.Google Scholar
Panchen, A. L. and Smithson, T. R. 1988. The relationships of the earliest tetrapods, p. 132. In Benton, M. J. (ed.), The Phylogeny and Classification of the Tetrapods. Volume 1: Amphibians, Reptiles, Birds. Oxford University Press, New York.Google Scholar
Panchen, A. L. and Smithson, T. R. 1990. The pelvic girdle and hind limb of Crassigyrinus scoticus (Lydekker) from the Scottish Carboniferous and the origin of the tetrapod pelvic skeleton. Transactions of the Royal Society of Edinburgh: Earth Sciences, 81: 3144.Google Scholar
Parsons, T. S., and Williams, E. E. 1962. The teeth of Amphibia and their relation to amphibian phylogeny. Journal of Morphology, 110: 375389.Google Scholar
Parsons, T. S. 1963. The relationships of the modern Amphibia: a re-examination. Quarterly Review of Biology, 38: 2653.Google Scholar
Preuschoft, H., Reif, W.-E., Loitsch, C., and Tepe, E. 1991. The function of labyrinthodont teeth: big teeth in small jaws, p. 151171. In Schmidt-Kittler, N. and Vogel, K. (eds.), Constructional Morphology and Evolution. Springer-Verlag, New York.Google Scholar
Raup, D. M. 1972. Taxonomic diversity during the Phanerozoic. Science, 177: 10651071.Google Scholar
Raup, D. M. 1976. Species diversity in the Phanerozoic: an interpretation. Paleobiology, 2: 289297.Google Scholar
Romer, A. S. 1939. Notes on branchiosaurs. American Journal of Science, 237: 748761.Google Scholar
Romer, A. S. 1946. The primitive reptile Limnoscelis restudied. American Journal of Science, 244: 149188.Google Scholar
Romer, A. S. 1964. Diadectes an amphibian? Copeia, 1964: 718719.Google Scholar
Romer, A. S. 1966. Vertebrate Paleontology (3rd ed.). University of Chicago Press, Chicago. 468 p.Google Scholar
Romer, A. S. 1968. Notes and Comments on Vertebrate Paleontology. The University of Chicago Press, Chicago. 304 p.Google Scholar
Ronov, A. B., Khain, V. E., Balukhovsky, A. N., and Seslavinsky, K. B. 1980. Quantitative analysis of Phanerozoic sedimentation. Sedimentary Geology, 25: 311325.Google Scholar
Schaeffer, B. 1965. The role of experimentation in the origin of higher levels of organization. Systematic Zoology, 14: 318336.Google Scholar
Schultze, H.-P. 1970. Folded teeth and the monophyletic origin of tetrapods. American Museum Novitates, 2408: 110.Google Scholar
Schultze, H.-P. 1991. A comparison of controversial hypotheses on the origin of tetrapods, p. 2967. In Schultze, H.-P. and Trueb, L. (eds.), Origins of the Higher Groups of Tetrapods: Controversy and Consensus. Cornell University Press, Ithaca, NY.Google Scholar
Signor, P. W. 1990. The geologic history of diversity. Annual Review of Ecology and Systematics, 21: 509539.Google Scholar
Signor, P. W. 1994. Biodiversity in geological time. American Zoologist, 34: 2332.CrossRefGoogle Scholar
Skelton, P. W. 1993. Adaptive radiation: definition and diagnostic tests, p. 4558. In Lees, D. R. and Edwards, D. (eds.), Evolutionary Patterns and Processes. Academic Press, New York.Google Scholar
Smithson, T. R. 1982. The cranial morphology of Greererpeton burkemorani Romer (Amphibia: Temnospondyli). Zoological Journal of the Linnaean Society, 76: 2990.Google Scholar
Smithson, T. R. 1985. The morphology and relationships of the Carboniferous amphibian Eoherpeton watsoni Panchen. Zoological Journal of the Linnaean Society, 85: 317410.Google Scholar
Smithson, T. R. 1989. The earliest known reptile. Nature, 342: 676678.Google Scholar
Stahl, B. J. 1974. Vertebrate History: Problems in Evolution. McGraw-Hill Book Co., New York. 594p.Google Scholar
Thomson, K. S. 1993. The origin of the tetrapods. American Journal of Science, 293A: 3362.Google Scholar
Trueb, L. 1993. Patterns of cranial diversity among the Lissamphibia, p. 255343. In Hanken, J. and Hall, B. K. (eds.), The Skull. University of Chicago Press, Chicago.Google Scholar
Trueb, L. and Clouthier, R. 1991a. A phylogenetic investigation of the inter- and intrarelationships of the Lissamphibia (Amphibia: Temnospondyli), p. 223313. In Schultze, H.-P. and Trueb, L. (eds.), Origins of the Higher Groups of Tetrapods: Controversy and Consensus. Cornell University Press, Ithaca, NY.Google Scholar
Trueb, L. and Clouthier, R. 1991b. Toward an understanding of the amphibians: two centuries of systematic history, p. 175193. In Schultze, H.-P. and Trueb, L. (eds.), Origins of the Higher Groups of Tetrapods: Controversy and Consensus. Cornell University Press, Ithaca, NY.Google Scholar
Vorobyeva, E., and Schultze, H.-P. 1991. Description and systematics of panderichthyid fishes with comments on their relationship to tetrapods, p. 68109. In Schultze, H.-P. and Trueb, L. (eds.), Origins of the Higher Groups of Tetrapods: Controversy and Consensus. Cornell University Press, Ithaca, NY.Google Scholar
Watson, D. M. S. 1963. On growth stages in branchiosaurs. Palaeontology, 6: 540553.Google Scholar
Wellstead, C. F. 1991. Taxonomic revision of the Lysorophia, Permo-Carboniferous lepospondyl amphibians. Bulletin of the American Museum of Natural History, 209: 190.Google Scholar
Williams, E. E. 1959. Gadow's arcualia and the development of tetrapod vertebrae. Quarterly Review of Biology, 34: 132.Google Scholar
Xavier, F. 1976. An exceptional reproductive strategy in anura: Nectophrynoides occidentalis Angel (Bufonidae), an example of adaptation to terrestrial life by viviparity, p. 545552. In Hecht, M. K., Goody, P. C., and Hecht, B. M. (eds.), Major Patterns in Vertebrate Evolution. Plenum Press, New York.Google Scholar