Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-24T03:45:24.868Z Has data issue: false hasContentIssue false

Stimulation of germination of dormant oat (Avena sativa L.) seeds by ethanol and other alcohols

Published online by Cambridge University Press:  19 September 2008

F. Corbineau
Affiliation:
Université Pierre et Marie Curie, Laboratoire de Physiologie Végétale Appliquée, Tour 53, 1 er étage, 4 place Jussieu, 75252 Paris cédex 05, France
B. Gouble
Affiliation:
Université Pierre et Marie Curie, Laboratoire de Physiologie Végétale Appliquée, Tour 53, 1 er étage, 4 place Jussieu, 75252 Paris cédex 05, France
S. Lecat
Affiliation:
Université Pierre et Marie Curie, Laboratoire de Physiologie Végétale Appliquée, Tour 53, 1 er étage, 4 place Jussieu, 75252 Paris cédex 05, France
D. Côme*
Affiliation:
Université Pierre et Marie Curie, Laboratoire de Physiologie Végétale Appliquée, Tour 53, 1 er étage, 4 place Jussieu, 75252 Paris cédex 05, France
*
* Correspondence

Abstract

Dormant dehusked Avena sativa L. (cv. Moyencourt) caryopses germinated easily at 10°C, but their germination was poor at 25 and 30°C. Ethanol overcame their dormancy and allowed germination at the last two temperatures when given continuously at concentrations ranging from 50 to 200 mm, or at higher concentrations at the beginning of imbibition. Ethanol also promoted germination in hypoxia. Other alcohols which were good substrates for alcohol dehydrogenase (ADH: EC 1.1.1.1), such as butanol-1, propanol-1 and 2-propen-1-ol, had the same stimulatory effect as ethanol, whereas alcohols which could not be oxidized by ADH (propanol-2 and methanol) did not improve germination. Salicylhydroxamic acid (SHAM) did not alter the stimulation of germination induced by ethanol, but 4-methylpyrazole (4-MP, an inhibitor of ADH) completely abolished this stimulation. The improvement of germination by alcohols which were good substrates for ADH was always associated with an increase in oxygen uptake by caryopses, whereas alcohols which were not ADH substrates did not enhance respiration. The stimulation of oxygen uptake induced by ethanol resulted in a decrease in CO2/O2 ratio and was suppressed by 4-MP, but ATP level in embryos was not modified until after the germination of caryopses. All the results obtained seem to demonstrate that the stimulatory action of ethanol on germination of dormant oat caryopses requires its metabolism through ADH and involves an activation of glycolysis and the Krebs cycle.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adkins, S.W., Simpson, G.M. and Naylor, J.M. (1984) The physiological basis of seed dormancy in Avena fatua. VI. Respiration and the stimulation of germination by ethanol. Physiologia Planturum 62, 148152.Google Scholar
Bewley, J.D. and Black, M. (1982) Physiology and biochemistry of seeds in relation to germination. Vol. 2. Viability, dormancy and environmental control. Berlin, Heidelberg, New York, Springer-Verlag.CrossRefGoogle Scholar
Cameron, D.S. and Cossins, E.A. (1967) Studies of intermediary metabolism in germinating pea cotyledons. The pathway of ethanol metabolism and the role of the tricar-boxylic acid cycle. Biochemical Journal 105, 323331.CrossRefGoogle ScholarPubMed
Camparinon, S. and Koukkari, W.L. (1977) Germination of wild rice, Zizania aquatica, seeds and the activity of alcohol dehydrogenase in young seedlings. Physiologia Plantarum 41, 293297.Google Scholar
Côme, D. and Corbineau, F. (1984) La dormance des céréales et son élimination. I. Principales caractéristiques. Comptes Rendus des Séances de l' Académie d'Agriculture de France 70, 709715.Google Scholar
Côme, D. and Tissaoui, T. (1968) Induction d'une dormance embryonnaire secondaire chez le Pommier (Pirus malus L.) par des atmosphères très appauvries en oxygène. Comptes Rendus de l'Académie des Sciences Paris 266, série D, 477479.Google Scholar
Côme, D., Lenoir, C. and Corbineau, F. (1984) La dormance des céréales et son élimination. Seed Science and Technology 12, 629640.Google Scholar
Côme, D., Corbineau, F. and Lecat, S. (1988) Some aspects of metabolic regulation of cereal seed germination and dormancy. Seed Science and Technology 16, 175186.Google Scholar
Corbineau, F. and Côme, D. (1980) Quelques caractéristiques de la dormance du caryopse d'orge (Hordeum vulgare L., variété Sonja). Comptes Rendus de l'Académie des Sciences Paris 290, série D. 547550.Google Scholar
Corbineau, F. and Côme, D. (1981) La dormance des céréales, qu'est-ce que c'est? Cultivar 142, 1517.Google Scholar
Corbineau, F., Lenoir, C., Lecat, S. and Côme, D. (1984) La dormance des semences des céréales et son élimination. 2. Mécanismes mis en jeu. Comptes Rendus des Séances de l'Académie d' Agriculture de France 70, 717724.Google Scholar
Corbineau, F., Lecat, S. and Côme, D. (1986) Dormancy of three cultivars of oat seeds (Avena sativa L.). Seed Science and Technology 14, 725735.Google Scholar
Cossins, E.A. (1978) Ethanol metabolism in plants. pp 169202 in Hook, D.D. and Crawford, R.M.M. (Eds) Plant life in anaerobic environments. Ann Arbor Science Publications.Google Scholar
Dunwell, J.M. (1981) Dormancy and germination in embryos of Hordeum vulgare L. Effect of dissection, incubation, temperature and hormone application. Annals of Botany 48, 203213.CrossRefGoogle Scholar
Esashi, Y., Ohhara, Y., Okazaki, M. and Hishinuma, K. (1979) Control of cocklebur seed germination by nitrogenous compounds: nitrite, nitrate, hydroxylamine, thiourea, azide and cyanide. Plant Cell Physiology 20, 344361.Google Scholar
Fidler, J.C. (1968) The metabolism of acetaldehyde in plant tissues. Journal of Experimental Botany 58, 4151.Google Scholar
Hart, J.W. and Berrie, A.M.M. (1968) Relationship between endogenous levels of malic acid and dormancy in grain of Avena fatua L. Phytochemistry 7, 12571260.CrossRefGoogle Scholar
Hers, H.-G. (1984) The discovery and the biological role of fructose 2,6-bisphosphate. Biochemical Society Transactions 12, 729735.Google Scholar
Janes, H.W., Rychter, A. and Frenkel, C. (1981) Development of cyanide-resistant respiration in mitochondria from potato tubers treated with ethanol, acetaldehyde and acetic acid. Planta 151, 201209.CrossRefGoogle ScholarPubMed
Keppler, D., Rudigier, J. and Decker, K. (1970) Enzymatic determination of uracil nucleotides in tissues. Analytical Biochemistry 38, 105114.CrossRefGoogle Scholar
Lang, A. (1965) Effects of some internal and external conditions on seed germination. pp 848893 in Ruhland, W. (Ed.) Handbuch der Pflanzenphysiologie, Vol. 15/2, Differentiation and development. Berlin, Heidelberg. New York, Springer-Verlag.Google Scholar
Larondelle, Y., Corbineau, F., Dethier, M., Côme, D. and Hers, H.-G. (1987) Fructose 2,6-bisphosphate in germinating oat seeds. A biochemical study of seed dormancy. European Journal of Biochemistry 166, 605610.Google Scholar
Leblova, S. (1974) Isolation and partial characterization of alcohol dehydrogenase from broad bean (Vicia faba). Australian Journal of Plant Physiology 1, 579582.Google Scholar
Lecat, S. (1987) Quelques aspects métaboliques de la dormance des semences d'Avoine (Avena sativa L.). Etude plus particulière de l'action des glumelles. Thesis, University Pierre et Marie Curie, Paris, France.Google Scholar
Lecat, S., Corbineau, F. and Côme, D. (1987) Stimulation de la germination des semences d'avoine par l'acide gibbérellique. pp 345356 in ANPP (Ed.) 2ème Colloque sur les substances de croissance et leurs utilisations en agriculture. ANPP, Paris, France.Google Scholar
Poljakoff-Mayber, A., Corbineau, F. and Côme, D. (1990) A possible mechanism of high temperature dormancy regulation in seeds of Avena sativa L. (cv Moyencourt). Plant Growth Regulation 9, 147156.CrossRefGoogle Scholar
Pradet, A. (1967) Etude des adénosines-5' mono, di et triphosphates dans les tissus végétaux. I. Dosage enzymatique. Physiologic Végétale 5, 209221.Google Scholar
Roberts, E.H. (1973) Oxidative processes and the control of seed germination. pp 189218 in Heydecker, W. (Ed.) Seed ecology. London, UK, Butterworths.Google Scholar
Roberts, E.H. and Smith, R.D. (1977) Dormancy and the pentose phosphate pathway. pp 385411 in Khan, A.A. (Ed.) The physiology and biochemistry of seed dormancy and germination. Amsterdam, The Netherlands, Elsevier North-Holland Biomedical Press.Google Scholar
Rychter, A., Janes, H.A., Chin, C.-K. and Frenkel, C. (1979) Effect of ethanol, acetaldehyde, acetic acid, and ethylene on changes in respiration and respiratory metabolites in potato tubers. Plant Physiology 64, 108111.Google Scholar
Sabularse, D.C. and Anderson, R.L. (1981) D-fructose-2,6-bisphosphate: a naturally occurring activator for inorganic pyrophosphate: D-fructose-6-phosphate 1 -phosphotransferase. Biochemical and Biophysical Research Communications 103, 848855.CrossRefGoogle ScholarPubMed
Simmonds, J.A. and Simpson, G.M. (1972) Regulation of the Krebs cycle and pentose phosphate activities in the control of dormancy of Avena fatua. Canadian Journal of Botany 50, 10411048.Google Scholar
Strehler, B.L. and Totter J.R. (1952) Firefly luminescence in the study of energy transfer mechanisms. I. Substrate and enzyme determination. Archives of Biochemistry and Biophysics 40, 2841.CrossRefGoogle Scholar
Taylorson, R.B. and Hendricks, S.B. (1979) Overcoming dormancy in seeds with ethanol and other anesthetics. Planta 145, 507510.CrossRefGoogle ScholarPubMed
Taylorson, R.B. and Hendricks, S.B. (1980/1981) Anesthetic release of seed dormancy. An overview. Israel Journal of Botany 29, 273280.Google Scholar
Upadhyaya, M.K., Naylor, J.M. and Simpson, G.M. (1982) The physiological basis of seed dormancy in Avena fatua. I. Action of the respiratory inhibitors, sodium azide and salicylhydroxamic acid. Physiologia Plantarum 54, 419424.Google Scholar
Upadhyaya, M.K., Naylor, J.M. and Simpson, G.M. (1983) The physiological basis of seed dormancy in Avena fatua. II. On the involvement of alternative respiration in the stimulation of germination by sodium azide. Physiologia Plantarum 58, 119123.Google Scholar
Van Schaftingen, E., Lederer, B., Bartrons, R. and Hers, H.-G. (1982) A kinetic study of pyrophosphate:fructose-6-phosphate phosphotransferase from potato tuber. Application to microassay of fructose 2,6-bisphosphate. European Journal of Biochemistry 129, 191195.CrossRefGoogle ScholarPubMed
Widholm, J.M. and Kishinami, I. (1988) Allyl alcohol selection for lower alcohol dehydrogenase activity in Nicotiana plumbaginifolia cultured cells. Plant Physiology 86, 266269.CrossRefGoogle ScholarPubMed
Yu, K.S., Michell, C.A., Yentur, S. and Robitaille, H.A. (1979) Cyanide insensitive, salicylhydroxamic acidsensitive processes in potentiation of light-requiring lettuce seeds. Plant Physiology 63, 121125.Google Scholar