Skip to main content Accessibility help

Soybean galactinol synthase forms fagopyritol B1 but not galactopinitols: substrate feeding of isolated embryos and heterologous expression

  • Ralph L. Obendorf (a1), Silvia Odorcic (a1), Takashi Ueda (a1) (a2), Mark P. Coseo (a1) and Elizabeth Vassallo (a1)...


Soybean (Glycine max (L.) Merrill) seeds accumulate sucrose, raffinose, stachyose and lesser amounts of galactopinitol A, galactopinitol B and fagopyritol B1 in axis and cotyledon tissues as part of the seed maturation process. Somatic embryos appear to be deficient in D-pinitol and galactopinitols, indicating a lack of synthesis by embryo tissues in vitro. Isolated immature soybean zygotic embryos were fed myo-inositol, D-pinitol, D-chiro-inositol and sucrose, individually and in combination, to evaluate the role of substrate availability on galactosyl cyclitol accumulation during precocious maturation. Feeding myo-inositol transiently doubled galactinol accumulation with little effect on other soluble carbohydrates. Feeding D-pinitol increased free D-pinitol 8-fold, galactopinitol A 4.5-fold and galactopinitol B 4.2-fold. Stachyose concentration was 2-fold higher in cotyledons after feeding D-pinitol than after feeding D-chiro-inositol. Feeding D-chiro-inositol increased fagopyritol B1 17-fold in the axis and 7-fold in the cotyledons, but did not increase other soluble carbohydrates. Feeding D-pinitol and D-chiro-inositol together reduced uptake of D-chiro-inositol and steady-state accumulation of galactinol and galactopinitols by 50%, compared to feeding D-pinitol alone. Increasing sucrose concentration from 0 to 200 mM had no effect. Recombinant soybean galactinol synthase, heterologously expressed in Escherichia coli, catalysed the synthesis of fagopyritol B1 and galactinol, but not galactopinitols. These results were consistent with the following interpretations: D-pinitol and D-chiro-inositol were transported from maternal tissues and not synthesized in the embryo, D-chiro-inositol uptake into embryos may be reduced by D-pinitol, fagopyritol B1 was synthesized by galactinol synthase while galactopinitols were not, and fagopyritol B1 and galactopinitols accumulated in response to the supply of free D-chiro-inositol and D-pinitol to embryos.


Corresponding author

*Corresponding author: Fax: +1 607 255 2644, Email:


Hide All
Blackman, S.A., Obendorf, R.L. and Leopold, A.C. (1992) Maturation proteins and sugars in desiccation tolerance of developing soybean seeds. Plant Physiology 100, 225230.
Carmi, N., Zhang, G.F., Petreikov, M., Gao, Z.F., Eyal, Y., Granot, D. and Schaffer, A.A. (2003) Cloning and functional expression of alkaline α-galactosidase from melon fruit: similarity to plant SIP proteins uncovers a novel family of plant glycosyl hydrolases. Plant Journal 33, 97106.
Chanprame, S., Kuo, T.M. and Widholm, J.M. (1998) Soluble carbohydrate content of soybean [ Glycine max (L.) Merr.] somatic and zygotic embryos during development. In Vitro Cellular and Developmental Biology–Plant 34, 6468.
Dittrich, P. and Brandl, A. (1987) Revision of the pathway of D -pinitol formation in Leguminosae. Phytochemistry 26, 19251926.
Frydman, R.B. and Neufeld, E.F. (1963) Synthesis of galactosylinositol by extracts from peas. Biochemical and Biophysical Research Communications 12, 121125.
Handley, L.W., Pharr, D.M. and McFeeters, R.F. (1983) Relationship between galactinol synthase activity and sugar composition of leaves and seeds of several crop species. Journal of the American Society for Horticultural Science 108, 600605.
Hegeman, C.E., Good, L.L. and Grabau, E.A. (2001) Expression of D - myo -inositol-3-phosphate synthase in soybean. Implications for phytic acid biosynthesis. Plant Physiology 125, 19411948.
Hitz, W.D., Carlson, T.J., Kerr, P.S. and Sebastian, S.A. (2002) Biochemical and molecular characterization of a mutation that confers a decreased raffinosaccharide and phytic acid phenotype on soybean seeds. Plant Physiology 128, 650660.
Hoch, G., Peterbauer, T. and Richter, A. (1999) Purification and characterization of stachyose synthase from lentil ( Lens culinaris ) seeds: Galactopinitol and stachyose synthesis. Archives of Biochemistry and Biophysics 366, 7581.
Horbowicz, M. and Obendorf, R.L. (1994) Seed desiccation tolerance and storability: Dependence on flatulence-producing oligosaccharides and cyclitols – review and survey. Seed Science Research 4, 385405.
Horbowicz, M., Obendorf, R.L., McKersie, B.D. and Viands, D.R. (1995) Soluble saccharides and cyclitols in alfalfa ( Medicago sativa L.) somatic embryos, leaflets, and mature seeds. Plant Science 109, 191198.
Horbowicz, M., Brenac, P. and Obendorf, R.L. (1998) Fagopyritol B1, O -α- D -galactopyranosyl-(1→2)- D - chiro -inositol, a galactosyl cyclitol in maturing buckwheat seeds associated with desiccation tolerance. Planta 205, 111.
Kerr, P.S., Pearlstein, R.W., Schweiger, B.J., Becker-Manley, M.F. and Pierce, J.W. (inventors) (1997) Nucleotide sequences of galactinol synthase from zucchini and soybean. United States Patent Number 5648210, 15 July 1997.
Kuo, T.M., Lowell, C.A. and Nelsen, T.C. (1997a) Occurrence of pinitol in developing soybean seed tissues. Phytochemistry 45, 2935.
Kuo, T.M., Lowell, C.A. and Smith, P.T. (1997b) Changes in soluble carbohydrates and enzymatic activities in maturing soybean seed tissues. Plant Science 125, 111.
Loewus, F.A., Murthy, P.P.N. (2000) myo -Inositol metabolism in plants. Plant Science 150, 119.
Lowell, C.A. and Kuo, T.M. (1989) Oligosaccharide metabolism and accumulation in developing soybean seeds. Crop Science 29, 459465.
Obendorf, R.L. (1997) Oligosaccharides and galactosyl cyclitols in seed desiccation tolerance (review update). Seed Science Research 7, 6374.
Obendorf, R.L., Ashworth, E.N. and Rytko, G.T. (1980) Influence of seed maturation on germinability in soybean. Crop Science 20, 483486.
Obendorf, R.L., Moon, H., Hildebrand, D.F., Torisky, R. and Collins, G.B. (1996) A comparison of pinitols in somatic and zygotic soybean embryos. Molecular and Cellular Biology of the Soybean 6, 40
Obendorf, R.L., Dickerman, A.M., Pflum, T.M., Kacalanos, M.A. and Smith, M.E. (1998a) Drying rate alters soluble carbohydrates, desiccation tolerance, and subsequent seedling growth of soybean ( Glycine max L. Merrill) zygotic embryos during in vitro maturation. Plant Science 132, 112.
Obendorf, R.L., Horbowicz, M., Dickerman, A.M., Brenac, P. and Smith, M.E. (1998b) Soluble oligosaccharides and galactosyl cyclitols in maturing soybean seeds in planta and in vitro. Crop Science 38, 7884.
Odorcic, S. (2003) The anabolic and catabolic pathways of soluble α-galactosides in soybean ( Glycine max (L.) Merrill) seeds. Senior Biology Research Honors Thesis, Cornell University, Ithaca New York.
Odorcic, S. and Obendorf, R.L. (2003) Galactosyl cyclitol accumulation enhanced by substrate feeding of soybean embryos. pp. 5160. in Nicolás, G.;, Bradford, K.J.;, Côme, D.;, Pritchard, H. (Eds) The biology of seeds: Recent research advances. Wallingford, CABI Publishing
Peterbauer, T. and Richter, A. (1998) Galactosylononitol and stachyose synthesis in seeds of adzuki bean: Purification and characterization of stachyose synthase. Plant Physiology 117, 165172.
Peterbauer, T. and Richter, A. (2001) Biochemistry and physiology of raffinose family oligosaccharides and galactosyl cyclitols in seeds. Seed Science Research 11, 185198.
Peterbauer, T., Mach, L., Mucha, J. and Richter, A. (2002a) Functional expression of a cDNA encoding pea ( Pisum sativum L.) raffinose synthase, partial purification of the enzyme from maturing seeds, and steady-state kinetic analysis of raffinose synthesis. Planta 215, 839846.
Peterbauer, T., Mucha, J., Mach, L. and Richter, A. (2002b) Chain-elongation of raffinose in pea seeds: Isolation, characterization and molecular cloning of a multifunctional enzyme catalyzing the synthesis of stachyose and verbascose. Journal of Biological Chemistry 277, 194200.
Saravitz, D.M., Pharr, D.M. and Carter, T.E. (1987) Galactinol synthase activity and soluble sugars in developing seeds of four soybean genotypes. Plant Physiology 83, 185189.
Schweizer, T.F. and Horman, I. (1981) Purification and structure determination of three α- D -galactopyranosylcyclitols from soya beans. Carbohydrate Research 95, 6171.
Shoemaker, R., Keim, P., Vodkin, L., Erpelding, J., Coryell, V., Khanna, A., Bolla, B., Marra, M., Hillier, L., Kucaba, T., Martin, J., Beck, C., Wylie, T., Underwood, K., Steptoe, M., Theising, B., Allen, M., Bowers, Y., Person, B., Swaller, T., Gibbons, M., Pape, D., Harvey, N., Schurk, R., Ritter, E., Kohn, S., Shin, T., Jackson, Y., Cardenas, M., McCann, R., Waterson, R. and Wilson, R. (1999) Public soybean EST project. (unpublished); GenBank BE33077; Genome Systems Clone ID: Gm-c104180 (5'), cDNA clone from mature senescing soybean leaf, Genome Systems Inc., 4633 World Parkway Circle, St. Louis, Missouri 63134.
Streeter, J.G., Lohnes, D.G. and Fioritto, R.J. (2001) Patterns of pinitol accumulation in soybean plants and relationships to drought tolerance. Plant, Cell and Environment 24, 429438.
Volk, G.M. (1998) Plasmodesmatal formation and galactinol synthase expression in melon. PhD dissertation, Cornell University, Ithaca, New York, pp. 176187.
Wanek, W. and Richter, A. (1997) Biosynthesis and accumulation of D -ononitol in Vigna umbellata in response to drought stress. Physiologia Plantarum 101, 416424.
Whistler, R.L. and Durso, D.F. (1950) Chromatographic separation of sugars on charcoal. Journal of the American Chemical Society 72, 677679.


Soybean galactinol synthase forms fagopyritol B1 but not galactopinitols: substrate feeding of isolated embryos and heterologous expression

  • Ralph L. Obendorf (a1), Silvia Odorcic (a1), Takashi Ueda (a1) (a2), Mark P. Coseo (a1) and Elizabeth Vassallo (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed