Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-26T06:55:57.642Z Has data issue: false hasContentIssue false

Smoke stimulates germination in two divergent Gondwanan species (Hibbertiapancheri and Scaevola montana) endemic to the biodiversity hotspot of New Caledonia

Published online by Cambridge University Press:  30 July 2012

Adrien S. Wulff*
Affiliation:
Université de la Nouvelle-Calédonie (UNC), Laboratoire Insulaire du Vivant et de l'Environnement (LIVE-EA 4243) B.P. R4, 98851Nouméa Cedex, New Caledonia Institut Agronomique néo-Calédonien (IAC), Axe II ‘Diversités biologique et fonctionnelle des écosystèmes’, BP 73, 98890Païta, New Caledonia
Shane R. Turner
Affiliation:
Kings Park and Botanic Garden, West Perth, WA6005, Australia School of Plant Biology, Faculty of Natural and Agricultural Sciences, The University of Western Australia, Crawley, WA6009, Australia
Bruno Fogliani
Affiliation:
Institut Agronomique néo-Calédonien (IAC), Axe II ‘Diversités biologique et fonctionnelle des écosystèmes’, BP 73, 98890Païta, New Caledonia
Laurent L'Huillier
Affiliation:
Institut Agronomique néo-Calédonien (IAC), Axe II ‘Diversités biologique et fonctionnelle des écosystèmes’, BP 73, 98890Païta, New Caledonia
*
*Correspondence Email: wulff@iac.nc

Abstract

Due to shared geological history and proximity, the flora of New Caledonia is closely linked to other Gondwanan land fragments such as Australia and New Zealand. Many predominant Australian groups are well represented within the New Caledonian flora, including the genera Hibbertia (23 species) and Scaevola (10 species). Previous studies have found that these two genera in particular have a marked positive germination response to smoke products, although all previous studies have centred on Australian species from fire-prone environments. In this present study, we test the hypothesis that two New Caledonian species of Hibbertia and Scaevola are smoke responsive even though the climate and ecological drivers in New Caledonia are in many respects fundamentally different from those of most of Australia. Preliminary results showed that germination of Hibbertia pancheri was significantly accelerated in response to smoke water while germination in Scaevola montana was also significantly enhanced. To the best of our knowledge, this is the first time that these trends have been illustrated for any New Caledonian species and these results will enhance restoration efforts of ultramafic scrublands impacted by mining activities in New Caledonia.

Type
Short Communication
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baskin, C.C. and Baskin, J.M. (2003) When breaking seed dormancy is a problem: try a move-along experiment. Native Plants 4, 1721.CrossRefGoogle Scholar
Baskin, C.C. and Baskin, J.M. (2004a) Germinating seeds of wildflowers, an ecological perspective. HortTechnology 14, 467473.CrossRefGoogle Scholar
Baskin, J.M. and Baskin, C.C. (2004b) A classification system for seed dormancy. Seed Science Research 14, 116.CrossRefGoogle Scholar
Brown, N.A.C., Jamieson, H. and Botha, P.A. (1994) Stimulation of seed germination in South African species of Restionaceae by plant-derived smoke. Plant Growth Regulation 15, 93100.CrossRefGoogle Scholar
Crosti, R., Ladd, P.G., Dixon, K.W. and Piotto, B. (2006) Post-fire germination: the effect of smoke on seeds of selected species from the central Mediterranean basin. Forest Ecology and Management 221, 306312.CrossRefGoogle Scholar
Dixon, K.W., Roche, S. and Pate, J.S. (1995) The promotive effect of smoke derived from burnt native vegetation on seed germination of Western Australian plants. Oecologia 101, 185192.CrossRefGoogle ScholarPubMed
Fogliani, B., Bouraïima-Medjebi, S., Medevielle, V. and Pineau, R. (2004) Methods to promote germination of two Cunoniaceae species, Cunonia macrophylla and Geissois pruinosa, from New Caledonia. Seed Science and Technology 32, 703715.CrossRefGoogle Scholar
Forbis, T.A., Floyd, S.K. and de Queiroz, A. (2002) The evolution of embryo size in angiosperms and other seed plants: implications for the evolution of seed dormancy. Evolution: International Journal of Organic Evolution 56, 21122125.Google ScholarPubMed
Hidayati, S.N., Walck, J.L., Merritt, D.J., Turner, S.R., Turner, D.W. and Dixon, K.W. (2012) Sympatric species of Hibbertia (Dilleniaceae) vary in dormancy break and germination requirements: implications for classifying morphophysiological dormancy in Mediterranean biomes. Annals of Botany 109, 11111123.CrossRefGoogle ScholarPubMed
Howarth, D.G., Gustafsson, M.H.G., Baum, D.A. and Motley, T.J. (2003) Phylogenetics of the genus Scaevola (Goodeniaceae): implication for dispersal patterns across the Pacific Basin and colonization of the Hawaiian Islands. American Journal of Botany 90, 915923.CrossRefGoogle ScholarPubMed
ISTA (International Seed Testing Association) (2003) Agricultural, vegetable and horticultural species, vol. 1. ISTA Working Sheets on tetrazolium testing. Bassersdorf, Switzerland, Ed. ISTA.Google Scholar
Jaffré, T., Morat, P., Veillon, J.-M. and MacKee, H.S. (1987) Changements dans la végétation de la Nouvelle-Calédonie au cours du Tertiaire: la végétation et la flore des roches ultrabasiques. Adansonia 4, 365391.Google Scholar
Jaffré, T., Rigault, F. and Dagostini, G. (1998) Impact des feux de brousse sur les maquis ligno-herbacés des roches ultramafiques de Nouvelle-Calédonie. Adansonia 20, 173189.Google Scholar
Jaffré, T., Rigault, F., Dagostini, G., Tinel-Fambart, J., Wulff, A. and Munzinger, J. (2009) Input of the different vegetation units to the richness and endemicity of the New Caledonian flora. Proceedings of the 11th Pacific Science Intercongress, March 2009, Tahiti.Google Scholar
Keeley, J.E. and Fotheringham, C.J. (1998) Smoke-induced seed germination in California chaparral. Ecology 79, 23202336.CrossRefGoogle Scholar
Måren, I.E., Janovský, Z., Spindelböck, J.P., Daws, M.I., Kaland, P.E. and Vandvik, V. (2010) Prescribed burning of northern heathlands: Calluna vulgaris germination cues and seed-bank dynamics. Plant Ecology 207, 245256.CrossRefGoogle Scholar
Merritt, D.J., Turner, S.R., Clarke, S. and Dixon, K.W. (2007) Seed dormancy and germination stimulation syndromes for Australian temperate species. Australian Journal of Botany 55, 336344.CrossRefGoogle Scholar
Mittermeier, R.A., Robles Gil, P., Hoffman, M., Pilgrim, J., Brooks, T., Goettsch Mittermeier, C., Lamoureux, J. and Da Fonseca, G.A.B. (2004) Hotspots revisited: Earth's biologically richest and most endangered terrestrial ecoregions. Mexico City, CEMEX.Google Scholar
Moreira, B., Tormo, J., Estrelles, E. and Pausas, J.G. (2010) Disentangling the role of heat and smoke as germination cues in Mediterranean Basin flora. Annals of Botany 105, 627635.CrossRefGoogle ScholarPubMed
Ooi, M.K.J., Auld, T.D. and Whelan, R.J. (2006) Dormancy and the fire-centric focus: germination of three Leucopogon species (Ericaceae) from South-eastern Australia. Annals of Botany 98, 421430.CrossRefGoogle ScholarPubMed
Pillon, Y. and Munzinger, J. (2005) Amborella fever and its (little) implication in conservation. Trends in Plant Science 10, 519520.CrossRefGoogle ScholarPubMed
R Development Core Team (2011) R: A language and environment for statistical computing. Vienna, Austria, R Foundation for Statistical Computing, Available online athttp://www.R-project.org (accessed accessed 9 July 2012).Google Scholar
Roche, S., Koch, J.M. and Dixon, K.W. (1997) Smoke enhanced seed germination for mine rehabilitation in the Southwest of Western Australia. Restoration Ecology 5, 191203.CrossRefGoogle Scholar
Rokich, D.P., Dixon, K.W., Sivasithamparam, K. and Meney, K.A. (2002) Smoke, mulch, and seed broadcasting effects on woodland restoration in Western Australia. Restoration Ecology 10, 185194.CrossRefGoogle Scholar
Setoguchi, H., Osawa, T.A., Pintaud, J.-C., Jaffré, T. and Veillon, J.-M. (1998) Phylogenetic relationships within Araucariaceae based on rbcL gene sequences. American Journal of Botany 85, 15071516.CrossRefGoogle ScholarPubMed
Thomas, P.B., Morris, E.C. and Auld, T.D. (2003) Interactive effects of heat shock and smoke on germination of nine species forming soil seed banks within the Sydney region. Austral Ecology 28, 674683.CrossRefGoogle Scholar
Turner, S.R., Merritt, D.J., Renton, M.S. and Dixon, K.W. (2009) Seed moisture content affects afterripening and smoke responsiveness in three sympatric Australian native species from fire prone environments. Austral Ecology 34, 866877.CrossRefGoogle Scholar