Skip to main content Accessibility help

Morphophysiological dormancy in seeds of Convallaria keiskei and a proposal to recognize two types of double dormancy in seed dormancy classification

  • Tetsuya Kondo (a1), Mizuki Narita (a1), Shyam S. Phartyal (a2), Siti N. Hidayati (a3), Jeffrey L. Walck (a3), Jerry M. Baskin (a4) and Carol C. Baskin (a4) (a5)...
  • Please note a correction has been issued for this article.


Convallaria majalis has double dormancy and hypogeal germination, but no information is available on embryo growth or on the effects of light and gibberellic acid (GA3) on germination in this genus. Therefore, we investigated embryo growth and other germination features in seeds of C. keiskei and compared the data with those of Trillium camschatcense in another study. Until now, in seeds with double dormancy, embryo growth and germination (epigeal) have been studied in detail only for seeds of T. camschatcense. Phenology of embryo growth and emergence of cotyledonary petiole/root (hereafter root) and shoot in seeds of C. keiskei were monitored outdoors. Effects of temperature, light and GA3 on embryo growth and root and shoot emergence were tested under laboratory conditions. Roots emerged the first spring following seed dispersal in autumn. The embryo grew soon after root emergence, and germination was hypogeal. Seeds with an emerged root formed buds from which a shoot (leaf) emerged above ground during the second spring. Alternating temperatures and light had negative effects on root emergence, and GA3 did not substitute for cold stratification in root emergence. Seeds of C. keiskei have double dormancy, but it differs from that in T. camschatcense. Based on differences in embryo growth before (T. camschatcense) versus after (C. keiskei) root emergence, and on epigeal (T. camschatcense) versus hypogeal (C. keiskei) germination, we suggest that two types of deep simple double morphophysiological dormancy (MPD) be recognized. Since embryo growth in C. keiskei does not fit the standard definition of MPD, we propose to expand this definition.


Corresponding author

*Correspondence E-mail:


Hide All
Barton, L.V. (1944) Some seeds showing special dormancy. Contributions from Boyce Thompson Institute 13, 259271.
Barton, L.V. and Schroeder, E.M. (1942) Dormancy in seeds of Convallaria majalis L. and Smilacina racemosa . Contributions from Boyce Thompson Institute 12, 277300.
Baskin, C.C. and Baskin, J.M. (2014) Seeds: Ecology, biography and evolution of dormancy and germination (2nd edition). San Diego, Elsevier/Academic Press.
Baskin, C.C., Chien, C.-T., Chen, S.Y. and Baskin, J.M. (2009) Epicotyl morphophysiological dormancy in seeds of Daphniphyllum glaucescens, a woody member of the Saxifragales. International Journal of Plant Sciences 170, 174181.
Bewley, J.D. and Black, M. (1994) Seeds. Physiology of development and germination (2nd edition). New York, Plenum Press.
Boyd, L. (1932) Monocotylous seedlings. Morphological studies in the post-seminal development of the embryo. Transactions and Proceedings – Botanical Society of Edinburgh 31, 1224.
Chien, C.-T., Chen, Y.-C., Tsai, C.-C., Baskin, J.M., Baskin, C.C. and Ku-Huang, L.-L. (2011) Deep simple epicotyl morphophysiological dormancy in seeds of two Viburnum species, with special reference to shoot growth and development inside the seed. Annals of Botany 108, 1322.
Gyer, J.F. (1997) Seed propagation of Trillium grandiflorum . Combined Proceedings of the International Plant Propagator's Society 47, 499506.
Japan Meteorological Agency . (2011) Climate statistics: normal (1981–2010) (in English) . Available at (accessed accessed 24 June 2014).
Kaul, R.B. (1978) Morphology of germination and establishment of aquatic seedlings of Alismataceae and Hydrocharitaceae. Aquatic Botany 5, 139147.
Kondo, T., Sakai, A. and Sasaki, S. (2002) Effects of sowing dates and burial depth on seedling emergence and survival of Calystegia soldanella Roem. et Schult. and Lathyrus japonicus Willd. Journal of the Japanese Society of Revegetation Technology 28, 330341 (in Japanese with English summary).
Kondo, T., Mikubo, M., Yamada, K., Walck, J.L. and Hidayati, S.N. (2011) Seed dormancy in Trillium camschatcense (Melanthiaceae) and the possible roles of light and temperature requirements for seed germination in forests. American Journal of Botany 98, 215226.
MacDougal, D.T. (1901) Seedlings of Arisaema . Torreya 1, 25.
Ohara, M. and Kawano, S. (2005) Life-history monographs of Japanese plants. 2: Trillium camschatcense Ker-Gawl. (Trilliaceae). Plant Species Biology 20, 7582.
Ohara, M., Araki, K., Yamada, E. and Kawano, S. (2006) Life-history monographs of Japanese plants. 6: Convallaria keiskei Miq. (Convallariaceae). Plant Species Biology 21, 119126.
Ohwi, J. (1983) New Flora of Japan (revised by M. Kitagawa). Tokyo, Shibundo (in Japanese).
Pickett, F.L. (1913) The germination of seeds of Arisaema . Proceedings of the Indiana Academy of Science 1913, 125128.
Platt, R.B. (1951) An ecological study of the mid-Appalachian shale barrens and of the plants endemic to them. Ecological Monographs 21, 269300.
Rennert, R.J. (1902) Seeds and seedlings of Arisaema triphyllum and Arisaema dracontium . Bulletin of the Torrey Botanical Club 29, 3754.
Suzuki, K. and Kawano, S. (2010) Seed germination and dispersal strategy of Trillium apetalon (Trilliaceae): a typical temperate woodland perennial in Japan. Plant Species Biology 25, 231239.
Takagi, H. (2001a) Breaking of two types of dormancy in seeds of Polygonatum odoratum used as vegetables. Journal of the Japanese Society for Horticultural Science 70, 416423.
Takagi, H. (2001b) Breaking of two types of dormancy in seeds of edible Polygonatum macranthum . Journal of the Japanese Society for Horticultural Science 70, 424430.
Tillich, H.-J. (1995) Seedlings and systematics in monocotyledons. pp. 303352 in Rudall, P.J.; Cribb, P.J.; Cutler, D.F.; Humphries, C.J. (Eds) Monocotyledons: systematics and evolution. Kew, Royal Botanic Gardens.
Tillich, H.-J. (2007) Seedling diversity and the homologies of seedling organs in the order Poales (Monocotyledons). Annals of Botany 100, 14131429.
Whigham, D. (1974) An ecological life history study of Uvularia perfoliata L. The American Midland Naturalist 91, 343359.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed

A correction has been issued for this article: