Skip to main content Accessibility help

Field burn versus fire-related cues: germination from the soil seed bank of a South American temperate grassland

  • Noelia Cuello (a1), Luis López-Mársico (a1) and Claudia Rodríguez (a1)


Fire and grazing are large-scale disturbances that shape the structure and function of open habitats. In temperate grasslands of southern South America, fire is used as a management tool to control tussock grasses and improve forage quality. In this study, we examined if fire and two of its components (heat and smoke) affect germination from the soil seed bank of a temperate grassland in Uruguay. Soil samples were extracted from a recently burned site and from an adjacent area that had not been burned for at least 4 years. The latter was subjected to four treatments: (1) heat shock, (2) smoke, (3) heat shock and smoke and (4) control. The samples were placed in a germination chamber and germination was recorded for 140 days. Field burn was the treatment that differed most from the control. This treatment produced a significant increase in density and richness of germinants and the germination peak preceded those of the remaining treatments. The three treatments involving fire-related cues did not affect the seedling richness and density, but the germination of some individual species was enhanced by some of them, mainly those in which the seeds were smoked. Our results show that fire and its components stimulate the germination of some species of the Río de la Plata grasslands, contrary to what had been observed previously in the region. We also suggest that, unlike Mediterranean-type systems, other fire cues, alone or in combination with heat and smoke, may promote germination after a fire event.


Corresponding author

Author for Correspondence: Claudia Rodríguez, Email:


Hide All
Altesor, A, Oesterheld, M, Leoni, E, Lezama, F and Rodríguez, C (2005) Effect of grazing on community structure and productivity of a Uruguayan grassland. Plant Ecology 179, 8391.
Andrade, BO, Marchesi, E, Burkart, S, Setubal, RB, Lezama, F, Perelman, S, Schneider, AA, Trevisan, R, Overbeck, GE and Boldrini, II (2018) Vascular plant species richness and distribution in the Río de la Plata grasslands. Botanical Journal of the Linnean Society 188, 250256.
Arcamone, JR and Jaureguiberry, P (2018) Germination response of common annual and perennial forbs to heat shock and smoke treatments in the Chaco Serrano, Central Argentina. Austral Ecology 43, 567577.
Archibald, S, Lehmann, CER, Gómez-Dans, JL and Bradstock, RA (2013) Defining pyromes and global syndromes of fire regimes. Proceedings of the National Academy of Sciences of the United States of America 110, 64426447.
Archibald, S, Hempson, GP and Lehmann, CER (2019) A unified framework for plant life-history strategies shaped by fire and herbivory. New Phytologist 224, 14901503.
Baeza, S, Rama, G and Lezama, F (2019) Cartografía de los pastizales naturales en las regiones geomorfológicas de Uruguay predominantemente ganaderas. Ampliación y actualización, pp. 2748in Altesor, A; López-Mársico, L and Paruelo, JM (Eds) Bases ecológicas y tecnológicas para el manejo de pastizales II. Montevideo, INIA.
Baskin, CC and Baskin, JM (2014) Seeds: ecology, biogeography and evolution of dormancy and germination. San Diego, Elsevier Academic Press.
Behling, H, Pillar, VD, Orlóci, L and Bauermann, SG (2004) Late Quaternary Araucaria forest, grassland (Campos), fire and climate dynamics, studied by high resolution pollen, charcoal and multivariate analysis of the Cambara do Sul core in southern Brazil. Palaeogeography. Palaeoclimatology and Palaeoecology 203, 277297.
Blank, RR and Young, JA (1998) Heated substrate and smoke: influence on seed emergence and plant growth. Journal of Range Management 51, 577583.
Bond, WJ and Parr, CL (2010) Beyond the forest edge: ecology, diversity and conservation of the grassy biomes. Biological Conservation 143, 23952404.
Bossuyt, B and Honnay, O (2008) Heat shock increases the reliability of a temperate calcareous grassland seed bank study. Plant Ecology 199, 17.
Brown, NAC (1993) Promotion of germination of fynbos seeds by plant-derived smoke. New Phytologist 123, 575583.
Carthey, AJ, Tims, A, Geedicke, I and Leishman, MR (2018) Broad-scale patterns in smoke-responsive germination from the south-eastern Australian flora. Journal of Vegetation Science 29, 737745.
Coughenour, MB (1985) Graminoid responses to grazing by large herbivores: adaptations, exaptations, and interacting processes. Annals of the Missouri Botanical Garden 72, 852863.
D'Angela, E, Facelli, JM and Jacobo, E (1988) The role of the permanent soil seed bank in early stages of a post-agricultural succession in the Inland Pampa. Argentina Vegetation 74, 3945.
Dayamba, SD, Tigabu, M, Sawadogo, L and Oden, PC (2008) Seed germination of herbaceous and woody species of the Sudanian savanna-woodland in response to heat shock and smoke. Forest Ecology and Management 256, 462470.
Di Rienzo, JA, Casanoves, F, Balzarini, MG, Gonzalez, L, Tablada, M and Robledo, CW (2016) Grupo InfoStat, FCA. Argentina, Universidad Nacional de Córdoba. Available at:
Dixon, KW, Roche, S and Pate, JS (1995) The promotive effect of smoke derived from burnt native vegetation on seed-germination of Western Australian plants. Oecologia 101, 185192.
Durán, A (1985) Los suelos del Uruguay. Montevideo, Hemisferio Sur.
Enright, NJ, Goldblum, D, Ata, P and Ashton, DH (1997) The independent effects of heat, smoke and ash on emergence of seedlings from the soil seed bank of a healthy Eucalyptus woodland in Grampians (Gariwerd) National Park, western Victoria. Australian Journal of Ecology 22, 8188.
Fernández, G, Lezama, F and Rodríguez, C (2019) Decoupling facilitative effects in a temperate subhumid grassland: photosynthetic metabolism matters. Plant Ecology & Diversity 12, 6373.
Fichino, BS, Dombroski, JRG, Pivello, VRA and Fidelis, A (2016) Does fire trigger seed germination in the Neotropical Savannas? Experimental tests with six Cerrado species. Biotropica 48, 181187.
Fidelis, A, Delgado-Cartay, MD, Blanco, CC, Muller, SC, Pillar, VD and Pfadenhauer, J (2010) Fire intensity and severity in Brazilian campos grasslands. Interciencia 35, 739745.
Fidelis, A, Daibes, LF and Martins, AR (2016) To resist or to germinate? The effect of fire on legume seeds in Brazilian subtropical grasslands. Acta Botanica Brasilica 30, 147151.
Figueroa, JA, Cavieres, LA, Gómez-González, S, Molina-Montenegro, M and Jaksic, FM (2009) Do heat and smoke increase emergence of exotic and native plants in the matorral of central Chile? Acta Oecologica 35, 335340.
Gallego, F (2013) Servicios ecosistémicos del pastizal: el seguimiento de un área protegida como sistema de referencia. Dissertation, Universidad de la República, Montevideo.
Gallego, F, López-Mársico, L, Tommasino, A, Casás, M, Haretche, F, Rodríguez, C and Altesor, A (2018) Efectos de la actividad forestal sobre el suelo, la vegetación y el banco de semillas en Sierras del Este, Uruguay, p. 527 in Proceedings from the XXVIII Reunión Argentina de Ecología, November 2018, Mar del Plata, Argentina.
Ghebrehiwot, H, Kulkarni, M, Kirkman, K and Van Staden, J (2012) Smoke and heat: influence on seedling emergence from the germinable soil seed bank of mesic grassland in South Africa. Plant Growth Regulation 66, 119127.
Gibson, DJ (2009) Grasses and grassland ecology. New York, Oxford University Press.
Haretche, F and Rodríguez, C (2006) Banco de semillas de un pastizal uruguayo bajo diferentes condiciones de pastoreo. Ecología Austral 16, 105113.
He, T and Lamont, BB (2018) Baptism by fire: the pivotal role of ancient conflagrations in evolution of the Earth's flora. National Science Review 5, 237254.
INIA-GRAS (2018) Banco de datos agroclimáticos 1965–2018. Uruguay, Instituto Nacional de Investigación Agropecuaria, Estación experimental Treinta y Tres. Available at:
Jacobs, BF, Kingston, DJ and Jacobs, LL (1999) The origin of grass-dominated ecosystems. Annals of the Missouri Botanical Garden 86, 590643.
Kaal, J, Gianotti, C, del Puerto, L, Criado-Boado, F and Rivas, M (2019) Molecular features of organic matter in anthropogenic earthen mounds, canals and lagoons in the Pago Lindo archaeological complex (Tacuarembó, Uruguayan lowlands) are controlled by pedogenetic processes and fire practices. Journal of Archaeological Science: Reports 26, 101900.
Keeley, JE (1991) Seed germination and life history syndromes in the California chaparral. The Botanical Review 57, 81116.
Keeley, JE and Fotheringham, CJ (1997) Trace gas emissions and smoke-induced seed germination. Science 276, 12481250.
Keeley, JE and Fotheringham, CJ (1998) Smoke-induced seed germination in California chaparral. Ecology 79, 23202336.
Keeley, JE and Fotheringham, CJ (2000) Role of fire in regeneration from seed, pp. 311330in Fenner, M (Ed.) Seeds: the ecology of regeneration in plant communities, Wallingford, CAB International.
Keeley, JE and Nitzberg, ME (1984) Role of charred wood in the germination of the chaparral herbs Emmenanthe penduliflora (Hydrophyllaceae) and Eriophyllum confertiflorum (Asteraceae). Madroño 31, 208218.
Keeley, JE and Pausas, JG (2018) Evolution of ‘smoke’ induced seed germination in pyroendemic plants. South African Journal of Botany 115, 251255.
Keeley, JE, Pausas, JG, Rundel, PW, Bond, WJ and Bradstock, RA (2011) Fire as an evolutionary pressure shaping plant traits. Trends in Plant Science 16, 406411.
Keeley, JE, Bond, WJ, Bradstock, RA, Pausas, JG and Rundel, PW (2012) Fire in Mediterranean ecosystems: ecology, evolution and management. Cambridge, Cambridge University Press.
Kin, AG, Suárez, CE, Chirino, CC, Ávila, PL and Morici, EF (2016) Impact of heat on seed germination of three perennial grasses in the semiarid region in Central Argentina. Australian Journal of Botany 64, 451455.
Knapp, AK, Briggs, JM, Hartnett, DC and Collins, SL (1998) Grassland dynamics: long-term ecological research in tallgrass prairie. New York, Oxford University Press.
Laterra, P, Vignolio, OR, Linares, MP, Giaquinta, A and Maceira, N (2003) Cumulative effects of fire on a tussock pampa grassland. Journal of Vegetation Science 14, 4354.
Le Stradic, S, Silveira, FA, Buisson, E, Cazelles, K, Carvalho, V and Fernandes, GW (2015) Diversity of germination strategies and seed dormancy in herbaceous species of campo rupestre grasslands. Austral Ecology 40, 537546.
Lezama, F, Pereira, M, Altesor, A and Paruelo, JM (2019) Grasslands of Uruguay: a floristic based description of their heterogeneity. Phytocoenologia 49, 211229.
López-Mársico, L, Farías-Moreira, L, Lezama, F, Altesor, A and Rodríguez, C (2019) Light intensity triggers different germination responses to fire-related cues in temperate grassland species. Folia Geobotanica 54, 5363.
Lunt, ID (1997) Germinable soil seed banks of anthropogenic native grasslands and grassy forest remnants in temperate south-eastern Australia. Plant Ecology 130, 2134.
Maikano, GN, Cohn, J and Di Stefano, J (2018) Are germination cues for soil-stored seed banks different in structurally different fire-prone communities? Austral Ecology 43, 89101.
Milberg, P (1992) Seed bank in a 35-year-old experiment with different treatments of a semi-natural grassland. Acta Oecologica 13, 743752.
Moreira, B, Tormo, J, Estrelles, E and Pausas, JG (2010) Disentangling the role of heat and smoke as germination cues in Mediterranean Basin flora. Annals of Botany 105, 627635.
Ne'eman, G, Ne'eman, R, Keith, DA and Whelan, RJ (2009) Does post-fire plant regeneration mode affect the germination response to fire-related cues? Oecologia 159, 483492.
Oesterheld, M, Loreti, J, Semmartin, M and Paruelo, JM (1999) Grazing, fire, and climate effects on primary productivity of grasslands and savannas, pp. 287306in Walker, LR (Ed.) Ecosystems of disturbed ground. Amsterdam, Elsevier.
Overbeck, GE and Pfadenhauer, J (2007) Adaptive strategies in burned subtropical grassland in southern Brazil. Flora 202, 2749.
Overbeck, GE, Müller, SC, Pillar, VD and Pfadenhauer, J (2005) Fine scale post fire dynamics in southern Brazilian subtropical grassland. Journal of Vegetation Science 16, 655664.
Overbeck, GE, Müller, SC, Pillar, VD and Pfadenhauer, J (2006) No heat-stimulated germination found in herbaceous species from burned subtropical grassland. Plant Ecology 184, 237243.
Paula, S and Pausas, JG (2008) Burning seeds: germinative response to heat treatments in relation to resprouting ability. Journal of Ecology 96, 543552.
Pausas, JG and Bond, WJ (2019) Humboldt and the reinvention of nature. Journal of Ecology 107, 10311037.
Pausas, JG and Paula, S (2019) Grasses and fire: the importance of hiding buds: a response to Moore et al. (2019) ‘Effects of drought and fire on resprouting capacity of 52 temperate Australian perennial native grasses’. New Phytologist 226, 957959.
Pausas, JG, Lamont, BB, Paula, S, Appezzato-da-Glória, B and Fidelis, A (2018) Unearthing belowground bud banks in fire-prone ecosystems. New Phytologist 217, 14351448.
Pillar, VD and de Quadros, FLF (1997) Grassland-forest boundaries in southern Brazil. Coenoses 12, 926.
Ramos, DM, Liaffa, ABS, Diniz, P, Munhoz, CBR, Ooi, MKJ, Borghetti, F and Valls, JFM (2016) Seed tolerance to heating is better predicted by seed dormancy than by habitat type in Neotropical savanna grasses. International Journal of Wildland Fire 25, 12731280.
Ramos, DM, Valls, JFM, Borghetti F, F and Ooi, M (2019) Fire cues trigger germination and stimulate seedling growth of grass species from Brazilian savannas. American Journal of Botany 106, 112.
Read, T, Bellairs, S, Mulligan, D and Lamb, D (2000) Smoke and heat effects on soil seed bank germination for the re-establishment of a native forest community in New South Wales. Austral Ecology 25, 4857.
Ren, L and Bai, Y (2016) Smoke and ash effects on seedling emergence from germinable soil seed bank in fescue prairie. Rangeland Ecology & Management 69, 499507.e3.
Reyes, O and Trabaud, L (2009) Germination behaviour of 14 Mediterranean species in relation to fire factors: smoke and heat. Plant Ecology 202, 113121.
Roberts, HA (1981) Seed banks in soils. Advances in Applied Biology 6, 156.
Rodríguez, C, Leoni, E, Lezama, F and Altesor, A (2003) Temporal trends in species composition and plant traits in natural grasslands of Uruguay. Journal of Vegetation Science 14, 433440.
Rosengurtt, B (1979) Tablas de comportamiento de las especies de plantas de campos naturales en el Uruguay. Montevideo, División Publicaciones y Ediciones de la Universidad de la República.
Royo-Pallarés, O, Berretta, E and Maraschin, G (2005) The South American Campos ecosystem, pp. 171219in Suttie, J; Reynolds, SG and Batello, C (Eds) Grasslands of the world. Rome, FAO.
Simpson, RL, Leek, M and Parker, V (1989) Seed banks: general concepts and methodological issues, pp. 38in Leek, MA; Parker, VT and Simpson, RL (Eds) Ecology of soil seed banks. San Diego, CA, Academic Press.
Simpson, KJ, Ripley, BS, Christin, P-A, Belcher, CM, Lehmann, CER, Thomas, GH and Osborne, CP (2016) Determinants of flammability in savanna grass species. Journal of Ecology 104, 138148.
Soriano, A, León, RJC, Sala, OE, Lavado, RS, Deregibus, VA, Cauhépé, MA, Scaglia, OA, Velázquez, CA and Lemcoff, JH (1991) Rio de la Plata grasslands, pp. 367407in Coupland, R (Ed.) Natural grasslands: introduction and western hemisphere. Amsterdam, Elsevier.
Tavşanoğlu, Ç, Çatav, ŞS and Özüdoğru, B (2017) Fire-related germination and early seedling growth in 21 herbaceous species in Central Anatolian steppe. Journal of Arid Environments 122, 109116.
Van Staden, J, Brown, NA, Jäger, AK and Johnson, TA (2000) Smoke as a germination cue. Plant Species Biology 15, 167178.
Wicklow, DT (1977) Germination response in Emmenanthe penduliflora (Hydrophyllaceae). Ecology 58, 201205.
Zedler, PH (2007) Fire effects on grasslands, pp. 397439in Johnson, EA and Miyanishi, K (Eds) Plant disturbance ecology: the process and the response. Berkeley, CA, California Academic Press.


Type Description Title
Supplementary materials

Cuello et al. supplementary material
Table S1

 Word (30 KB)
30 KB

Field burn versus fire-related cues: germination from the soil seed bank of a South American temperate grassland

  • Noelia Cuello (a1), Luis López-Mársico (a1) and Claudia Rodríguez (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.