Skip to main content Accessibility help
×
Home

Evaluation of dormancy and germination responses to temperature in Carduus acanthoides and Anagallis arvensis using a screening system, and relationship with field-observed emergence patterns

  • Betina C. Kruk (a1) and Roberto L. Benech-Arnold (a1)

Abstract

Experiments on the facultative winter annuals Carduus acanthoides and Anagallis arvensis were performed: (i) to determine thermal conditions that induce or release dormancy, (ii) to investigate to what extent changes in dormancy level resulting from those thermal conditions explain the seasonal pattern of emergence of these species, and (iii) to estimate required thermal time and base temperature for the germination of non-dormant seeds. Carduus acanthoides required high temperatures followed by decreasing temperatures for dormancy release; however, low winter temperatures did not induce secondary dormancy as expected for a winter annual. To the contrary, low temperatures stimulated dormancy release in the long term. In A. arvensis, dormancy relief was enhanced by dry storage at 25°C, and the response to low temperature was different depending on moisture conditions. Prolonged exposure to moist-chilling increased the dormancy level of the population, while dry storage at 4°C relieved dormancy. For both species, changes in the thermal range permissive for germination as a result of dormancy modifications explained to a large extent the timing of the emergence periods observed in the field. In neither species did base temperature for germination change with the dormancy level of the population. Thermal time required forgermination of C. acanthoides varied with dormancy, while for A. arvensis seeds it was constant.

Copyright

Corresponding author

*Fax: (5411) 45148737/9 Email: benech@ifeva.edu.ar; bkruk@mail.agro.uba.ar

References

Hide All
Baskin, J.M. and Baskin, C.C. (1975) Ecophysiology of seed dormancy and germination in Torilis japonica in relation to its life cycle strategy. Bulletin of the Torrey Botanical Club 102, 6772.
Baskin, J.M. and Baskin, C.C. (1976) High temperature requirement for after-ripening in seeds of winter annuals. New Phytologist 77, 619624.
Baskin, J.M. and Baskin, C.C. (1977) Role of temperature in the germination ecology of three summer annual weeds. Oecologia 30, 377382.
Baskin, J.M. and Baskin, C.C. (1978) Seasonal changes in the germination response of Cyperus inflexus seeds to temperature and their ecological significance. Botanical Gazette 139, 231235.
Baskin, J.M. and Baskin, C.C. (1979) The ecological life cycle of Thlaspi perfoliatum and a comparision with published studies on Thlaspi arvense. Weed Research 19, 285292.
Baskin, J.M. and Baskin, C.C. (1983) Seasonal changes in the germination responses of buried seeds of Arabidopsis thaliana and ecological interpretation. Botanical Gazette 144, 540543.
Baskin, J.M. and Baskin, C.C. (1984) Role of temperature in regulating timing of germination in soil seed reserves of Lamium purpureum L. Weed Research 24, 341349.
Baskin, J.M. and Baskin, C.C. (1989) Germination response of buried seeds of Capsella-bursa pastoris exposed to seasonal temperature changes. Weed Research 29, 205212.
Benech-Arnold, R.L. and Sánchez, R.A. (1995) Modelling weed seed germination. pp. 545566in Kigel, J., Galili, G. (Eds) Seed development and germination. New York. Marcel Dekker.
Benech-Arnold, R.L., Ghersa, C.M., Sánchez, R.A. and Insausti, P. (1990a) Temperature effects on dormancy release and germination rate in Sorghum halepense (L.) Pers. seeds: a quantitative analysis. Weed Research 30, 8189.
Benech-Arnold, R.L., Ghersa, C.M., Sánchez, R.A. and Insausti, P. (1990b) A mathematical model to predict Sorghum halepense seed germination in relation to soil temperature. Weed Research 30, 9199.
Bewley, J.D. and Black, M. (1982) Physiology and biochemistry of seeds. Volume 2, Berlin, Springer-Verlag.
Bouwmeester, H.J. (1990) The effect of environmental conditions on the seasonal dormancy pattern and germination of weed seeds. PhD thesis. Agricultural University, Wageningen, The Netherlands.
Bouwmeester, H.J. and Karssen, C.M. (1992) The dual role of temperature in the regulation of the seasonal changes in dormancy and germination of seeds of Polygonum persicaria L. Oecologia 90, 8894.
Bouwmeester, H.J. and Karssen, C.M. (1993) Annual changes in dormancy and germination in seeds of Sisymbrium officinale (L.) Scop. New Phytologist 124, 179191.
Bauer, M.C., Meyer, S.E. and Allen, P.S. (1998) A simulation model to predict seed dormancy loss in the field for Bromus tectorum L. Journal of Experimental Botany 49, 12351244.
Grant Lipp, A.E. and Ballard, L.A.T. (1963) Germination pattern shown by the light sensitive seeds of Anagallisarvensis. Australian Journal of Biological Sciences 16, 574584.
Karssen, C.M. (1982) Seasonal patterns of dormancy in weed seeds. pp. 243270in Khan, A.A. (Ed.) The physiology and biochemistry of seed development, dormancy and germination. Amsterdam, Elsevier Biomedical Press.
Kruk, B.C. and Benech-Arnold, R.L. (1998) Functional and quantitative analysis of seed thermal responses in prostrate knotweed (Polygonum aviculare) and common purslane (Portulaca oleracea). Weed Science 46, 8390.
Lauer, E. (1953) Uber die Keimtemperatur von Ackerunkrãutern und deren Einflub auf die Zusammensetzung von Unkrautgesellshaften. Flora oder Allgemeine Botanische Zeitung 140, 551595.
Leguizamón, E.S., Cruz, P.A., Guiamet, J.J. and Casano, L.M. (1981) Determinación de la población de semillas de maleza en suelos del distrito de Pujato (Prov. de Santa Fe). Ecologia(Argentina) 6, 2123.
McCarty, M.K., Scifres, C.J., Smith, A.L. and Horst, G.L. (1969) Germination and early seedling development of musk and plumeless thistles. Nebraska Agricultural Experiment Station Research Bulletin 2, 128.
Probert, R.J. (1992) The role of temperature in germination ecophysiology. pp. 285325in Fenner, M. (Ed) Seeds. The ecology of regeneration in plant communities. Wallingford, CAB International.
Roberts, E.H. (1988) Temperature and seed germination. pp. 109132in Long, S.P., Woodward, F.I. (Eds) Plants and temperature. Cambridge, Company of Biologists Ltd.
Roberts, H.A. and Chancellor, R.J. (1979) Periodicity of seedling emergence and achene survival in some species of Carduus, Cirsium and Onopordum. Journal of Applied Ecology 16, 641648.
Thompson, P.A. (1970) Changes in germination responses of Silene secundiflora in relation to the climate of its habitat. Physiologia Plantatum 23, 739746.
Vegis, A. (1964) Dormancy in higher plants. Annual Review of Plant Physiology 15, 185224.
Washitani, I. (1987) A convenient screening system and a model for thermal germination responses of wild plant seeds: behaviour of model and real seed in the system. Plant, Cell and Environment 10, 587598.

Keywords

Related content

Powered by UNSILO

Evaluation of dormancy and germination responses to temperature in Carduus acanthoides and Anagallis arvensis using a screening system, and relationship with field-observed emergence patterns

  • Betina C. Kruk (a1) and Roberto L. Benech-Arnold (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.