Skip to main content Accessibility help

Development and potential of genetically engineered oilseeds

  • John M. Dyer (a1) and Robert T. Mullen (a2)


Oilseed crops are major sources of oils for human nutrition, and an increasing proportion is also being utilized for industrial purposes. Recent advances in our understanding of the basic biochemistry of seed oil biosynthesis, coupled with identification of genes for oilseed modification, have set the stage for the genetic engineering of oilseed crops that produce ‘designer’ plant seed oils tailored for specific applications. In this review we provide an overview of seed oil biosynthesis and highlight the enzymatic steps that have already been targeted for genetic manipulation, with the end goal of producing seed oils containing desired amounts of fatty acid components. Furthermore, we describe the identification of genes from various wild plant species that are capable of producing structurally diverse fatty acids, and how these advances open the door to the production of entirely novel oils in conventional oilseed crops. Transgenic oilseeds producing high amounts of these novel fatty acids represent renewable sources of raw materials that may compete with, and eventually replace, some petrochemicals that are derived from non-renewable crude oil.


Corresponding author

Correspondence: Fax: +1 504 286 4419 Email:
*Fatty acid nomenclature indicates the number of carbon atoms in the backbone, number of double bonds, and position and configuration of double bonds counted from the carboxyl end of the fatty acid. For example, 18:0 (stearic acid) indicates a fatty acid 18 carbon atoms in length with zero (saturated) double bonds; 18:1Δ9cis (oleic acid) indicates a fatty acid 18 carbons in length with one cis-type double bond (unsaturated) at position 9 from the carboxyl end of the fatty acid.
Interesterification involves the interchange of fatty acids at different positions (sn-1, sn-2 and sn-3) on the glycerol backbone of TAGs.


Hide All
Abbadi, A., Domergue, F., Bauer, J., Napier, J.A., Welti, R., Zahringer, U., Cirpus, P. and Heinz, E. (2004) Biosynthesis of very-long-chain polyunsaturated fatty acids in transgenic oilseeds: constraints on their accumulation. Plant Cell 16, 27342748.
Auld, D.L., Rolfe, R.D. and McKeon, T.A. (2001) Development of castor with reduced toxicity. Journal of New Seeds 3, 6169.
Bao, X. and Ohlrogge, J. (1999) Supply of fatty acid is one limiting factor in the accumulation of triacylglycerol in developing embryos. Plant Physiology 120, 10571062.
Bockisch, M. (1998) Fats and oils handbook. Champaign, IL, IAOCS Press.
Bouvier-Nave, P., Benveniste, P., Oelkers, P., Sturley, S.L. and Schaller, H. (2000) Expression in yeast and tobacco of plant cDNAs encoding acyl CoA:diacylglycerol acyltransferase. European Journal of Biochemistry 267, 8596.
Broun, P. and Somerville, C. (1997) Accumulation of ricinoleic, lesquerolic, and densipolic acids in seeds of transgenic Arabidopsis plants that express a fatty acyl hydroxylase cDNA from castor bean. Plant Physiology 113, 933942.
Broun, P., Boddupalli, S. and Somerville, C. (1998) A bifunctional oleate 12-hydroxylase:desaturase from Lesquerella fendleri. Plant Journal 13, 201210.
Broun, P., Gettner, S. and Somerville, C. (1999) Genetic engineering of plant lipids. Annual Review of Nutrition 19, 197216.
Buchanan, B.B., Gruissen, W. and Jones, R.L. (2000) Biochemistry and molecular biology of plants. Rockville, Maryland, American Society of Plant Physiologists.
Burg, D.A. and Kleiman, R. (1991) Preparation of meadowfoam dimer acids and dimer esters, and their use as lubricants. Journal of the American Oil Chemists Society 68, 600603.
Cahoon, E.B., Shanklin, J. and Ohlrogge, J.B. (1992) Expression of a coriander desaturase results in petroselinic acid production in transgenic tobacco. Proceedings of the National Academy of Sciences, USA 89, 1118411188.
Cahoon, E.B., Cranmer, A.M., Shanklin, J. and Ohlrogge, J.B. (1994) Δ 6 Hexadecenoic acid is synthesized by the activity of a soluble Δ 6 palmitoyl-acyl carrier protein desaturase in Thunbergia alata endosperm. Journal of Biological Chemistry 269, 2751927526.
Cahoon, E.B., Coughlan, S.J. and Shanklin, J. (1997) Characterization of a structurally and functionally diverged acyl-acyl carrier protein desaturase from milkweed seed. Plant Molecular Biology 33, 11051110.
Cahoon, E.B., Shah, S., Shanklin, J. and Browse, J. (1998) A determinant of substrate specificity predicted from the acyl-acyl carrier protein desaturase of developing cat's claw seed. Plant Physiology 117, 593598.
Cahoon, E.B., Carlson, T.J., Ripp, K.G., Schweiger, B.J., Cook, G.A., Hall, S.E. and Kinney, A.J. (1999) Biosynthetic origin of conjugated double bonds: Production of fatty acid components of high-value drying oils in transgenic soybean embryos. Proceedings of the National Academy of Sciences, USA 96, 1293512940.
Cahoon, E.B., Marillia, E.F., Stecca, K.L., Hall, S.E., Taylor, D.C. and Kinney, A.J. (2000) Production of fatty acid components of meadowfoam oil in somatic soybean embryos. Plant Physiology 124, 243251.
Cahoon, E.B., Ripp, K.G., Hall, S.E. and Kinney, A.J. (2001) Formation of conjugated Δ 8, Δ 10 double bonds by Δ 12 -oleic acid desaturase related enzymes. Biosynthetic origin of calendic acid. Journal of Biological Chemistry 276, 26372643.
Cahoon, E.B., Ripp, K.G., Hall, S.E. and McGonigle, B. (2002) Transgenic production of epoxy fatty acids by expression of a cytochrome P450 enzyme from Euphorbia lagascae seed. Plant Physiology 128, 615624.
Davies, H.M. (1993) Medium chain acyl-ACP hydrolysis activities of developing oilseeds. Phytochemistry 33, 13531356.
Davies, H.M., Anderson, L., Fan, C. and Hawkins, D.J. (1991) Developmental induction, purification, and further characterization of 12:0-ACP thioesterase from immature cotyledons of Umbellularia californica. Archives of Biochemistry and Biophysics 290, 3745.
Dehesh, K., Jones, A., Knutzon, D.S. and Voelker, T.A. (1996) Production of high levels of 8:0 and 10:0 fatty acids in transgenic canola by overexpression of Ch FatB2, a thioesterase cDNA from Cuphea hookeriana. Plant Journal 9, 167172.
Domergue, F., Abbadi, A. and Heinz, E. (2005) Relief for fish stocks: oceanic fatty acids in transgenic oilseeds. Trends in Plant Science 10, 112116.
Dyer, J.M., Chapital, D.C., Kuan, J.C., Mullen, R.T., Turner, C., McKeon, T.A. and Pepperman, A.B. (2002) Molecular analysis of a bifunctional fatty acid conjugase/desaturase from tung. Implications for the evolution of plant fatty acid diversity. Plant Physiology 130, 20272038.
Eccleston, V.S. and Ohlrogge, J.B. (1998) Expression of lauroyl-acyl carrier protein thioesterase in Brassica napus seeds induces pathways for both fatty acid oxidation and biosynthesis and implies a set point for triacylglycerol accumulation. Plant Cell 10, 613621.
Edem, D.O. (2002) Palm oil: biochemical, physiological, nutritional, hematological, and toxicological aspects: A review. Plant Foods for Human Nutrition 57, 319341.
Erhan, S.M., Kleiman, R. and Isbell, T.A. (1993) Estolides from meadowfoam oil fatty acids and other monounsaturated fatty acids. Journal of the American Oil Chemists Society 70, 461465.
Facciotti, M.T., Bertain, P.B. and Yuan, L. (1999) Improved stearate phenotype in transgenic canola expressing a modified acyl-acyl carrier protein thioesterase. Nature Biotechnology 17, 593597.
Fernandez-Cornejo, J. and McBride, W.D. (2002) Genetically engineered crops: U.S. adoption and impacts. Agricultural Outlook 294, 2427.
Fitch-Haumann, B. (1997) Structured lipids allow fat tailoring. Inform 8, 10041011.
Graef, G.L., Miller, L.A., Fehr, W.R. and Hammon, E.G. (1985) Fatty acid development in a soybean mutant with high stearic acid. Journal of the American Oil Chemists Society 62, 773775.
Graham, S.A. (1989) Cuphea: A new plant source of medium-chain fatty acids. Critical Reviews in Food Science and Nutrition 28, 139173.
Graham, S.A., Hirsinger, F. and Robbelen, G. (1981) Fatty acids of Cuphea ( Lythraceae ) seed lipids and their systematic significance. American Journal of Botany 68, 908917.
Grayburn, W.S. and Hildebrand, D.F. (1995) Progeny analysis of tobacco that express a mammalian Δ 9 desaturase. Journal of the American Oil Chemists Society 72, 317321.
Gunstone, F.D. (1998) Movements towards tailor-made fats. Progress in Lipid Research 37, 277305.
Hawkins, D.J. and Kridl, J.C. (1998) Characterization of acyl-ACP thioesterases of mangosteen ( Garcinia mangostana ) seed and high levels of stearate production in transgenic canola. Plant Journal 13, 743752.
Herbers, K. and Sonnewald, U. (1999) Production of new/modified proteins in transgenic plants. Current Opinion in Biotechnology 10, 163168.
Heyer, A.G., Lloyd, J.R. and Kossmann, J. (1999) Production of modified polymeric carbohydrates. Current Opinion in Biotechnology 10, 169174.
Huang, A.H.C. (1992) Oil bodies and oleosins in seeds. Annual Review of Plant Physiology and Plant Molecular Biology 43, 177200.
Huang, A.H.C. (1996) Oleosins and oil bodies in seeds and other organs. Plant Physiology 110, 10551061.
Huang, J.K., Rozelle, S., Pray, C. and Wang, Q.F. (2002) Plant biotechnology in China. Science 295, 674677.
James, C. (2001) Global status of commercialized transgenic crops Ithaca, New York, International Service for the Acquisition of Agri-Biotech Applications.
Kinney, A.J. (1996a) Improving soybean seed quality. Nature Biotechnology 14, 946
Kinney, A.J. (1996b) β-Ketoacyl-ACP synthetase II genes from plants. US Patent 5,500,361
Kinney, A.J., Knowlton, S., Cahoon, E.B. and Hitz, W.D. (1998) Re-engineering oilseed crops to produce industrially useful fatty acids. pp. 623628. in Sánchez, J.;, Cerdá-Olmedo, E.;, Martinez-Force, E. (Eds) Advances in plant lipid research, Seville, Spain, University of Seville Press.
Knutzon, D.S., Thompson, G.A., Radke, S.E., Johnson, W.B., Knauf, V.C. and Kridl, J.C. (1992) Modification of Brassica seed oil by antisense expression of a stearoyl-acyl carrier protein desaturase gene. Proceedings of the National Academy of Sciences, USA 89, 26242628.
Knutzon, D.S., Hayes, T.R., Wyrick, A., Xiong, H., Davies, H.M. and Voelker, T.A. (1999) Lysophosphatidic acid acyltransferase from coconut endosperm mediates the insertion of laurate at the sn-2 position of triacylglycerols in lauric rapeseed oil and can increase total laurate levels. Plant Physiology 120, 739746.
Lardizabal, K.D., Metz, J.G., Sakamoto, T., Hutton, W.C., Pollard, M.R. and Lassner, M.W. (2000) Purification of a jojoba embryo wax synthase, cloning of its cDNA, and production of high levels of wax in seeds of transgenic Arabidopsis. Plant Physiology 122, 645655.
Lavers, B. (2002) Canola in Canada. Oils and Fats International 18, 1819.
Lee, M., Lenman, M., Banas, A., Bafor, M., Singh, S., Schweizer, M., Nilsson, R., Liljenberg, C., Dahlqvist, A., Gummeson, P.O., Sjodahl, S., Green, A. and Stymne, S. (1998) Identification of non-heme diiron proteins that catalyze triple bond and epoxy group formation. Science 280, 915918.
Liu, Q., Singh, S.P. and Green, A.G. (2002) High-stearic and high-oleic cottonseed oils produced by hairpin RNA-mediated post-transcriptional gene silencing. Plant Physiology 129, 17321743.
McKeon, T.A., Lin, J.T. and Stafford, A.E. (1999) Biosynthesis of ricinoleate in castor oil. Advances in Experimental Medicine and Biology 464, 3747.
Miquel, M.F. and Browse, J.A. (1994) High-oleate oilseeds fail to develop at low temperature. Plant Physiology 106, 421427.
Moon, H., Hazebroek, J. and Hildebrand, D.F. (2000) Changes in fatty acid composition in plant tissues expressing a mammalian Δ 9 desaturase. Lipids 35, 471479.
Murphy, D.J. (1993) Structure, function, and biogenesis of storage lipid bodies and oleosins in plants. Progress in Lipid Research 32, 247280.
Murphy, D.J. (1999) Production of novel oils in plants. Current Opinion in Biotechnology 10, 175180.
Ohlrogge, J. and Browse, J. (1995) Lipid biosynthesis. Plant Cell 7, 957970.
Osorio, J., Fernandez-Martinez, J., Mancha, M. and Garces, R. (1995) Mutant sunflowers with high concentration of saturated fatty acids in their oil. Crop Science 35, 739742.
Padley, F.B., Gunstone, F.D. and Harwood, J.L. (1994) Occurrence and characteristics of oil and fats. pp. 49170. Gunstone, F.D.;, Harwood, J.L.;, Padley, F.B. (Eds) The lipid handbook. London, Chapman & Hall.
Parmenter, D.L., Boothe, J.G., van Rooijen, G.J.H., Yeung, E.C. and Moloney, M.M. (1995) Production of biologically active hirudin in plant seeds using oleosin partitioning. Plant Molecular Biology 29, 11671180.
Phillips, B.E., Smith, C.R. and Tallent, W.H. (1971) Glycerides of Limnanthes douglasii seed oil. Lipids 6, 9399.
Polashock, J.J., Chin, C.K. and Martin, C.E. (1992) Expression of the yeast Δ9 fatty acid desaturase in Nicotiana tobaccum. Plant Physiology 100, 894901.
Pollard, M.R. and Stumpf, P.K. (1980) Biosynthesis of C 20 and C 22 fatty acids by developing seeds of Limnanthes alba: chain elongation and Δ 5 desaturation. Plant Physiology 66, 649655.
Pollard, M.R., Anderson, L., Fan, C., Hawkins, D.J. and Davies, H.M. (1991) A specific acyl-ACP thioesterase implicated in medium-chain fatty acid production in immature cotyledons of Umbellularia californica. Archives of Biochemistry and Biophysics 284, 306312.
Qiu, X., Reed, D.W., Hong, H.P., MacKenzie, S.L. and Covello, P.S. (2001) Identification and analysis of a gene from Calendula officinalis encoding a fatty acid conjugase. Plant Physiology 125, 847855.
Richter, K.D., Mukherjee, K.D. and Weber, N. (1996) Fat infiltration in liver of rats induced by different dietary plant oils: high oleic-, medium oleic- and high petroselinic acid-oils. Zeitschrift Fur Ernahrungwissenschaft 35, 241248.
Roesler, K., Shintani, D., Savage, L., Boddupalli, S. and Ohlrogge, J. (1997) Targeting of the Arabidopsis homomeric acetyl-coenzyme A carboxylase to plastids of rapeseeds. Plant Physiology 113, 7581.
Roughan, P.G. (1997) Stromal concentrations of coenzyme A and its esters are insufficient to account for rates of chloroplast fatty acid synthesis: evidence for substrate channelling within the chloroplast fatty acid synthase. Biochemical Journal 327, 267273.
Sayanova, O.V. and Napier, J.A. (2004) Eicosapentaenoic acid: biosynthetic routes and the potential for synthesis in transgenic plants. Phytochemistry 65, 147158.
Sayanova, O., Smith, M.A., Lapinskas, P., Stobart, A.K., Dobson, G., Christie, W.W., Shewry, P.R. and Napier, J.A. (1997) Expression of a borage desaturase cDNA containing an N-terminal cytochrome b 5 domain results in the accumulation of high levels of Δ 6 -desaturated fatty acids in transgenic tobacco. Proceedings of the National Academy of Sciences, USA 94, 42114216.
Schnurr, J.A., Shockey, J.M., de Boer, G.J. and Browse, J.A. (2002) Fatty acid export from the chloroplast. Molecular characterization of a major plastidial acyl-coenzyme A synthetase from Arabidopsis. Plant Physiology 129, 17001709.
Schultz, D.J., Cahoon, E.B., Shanklin, J., Craig, R., Cox-Foster, D.L., Mumma, R.O. and Medford, J.I. (1996) Expression of a Δ 9 14:0-acyl carrier protein fatty acid desaturase gene is necessary for the production of ω 5 anacardic acids found in pest-resistant geranium (Pelargonium xhortorum). Proceedings of the National Academy of Sciences, USA 93, 87718775.
Shanklin, J. and Cahoon, E.B. (1998) Desaturation and related modifications of fatty acids. Annual Review of Plant Physiology and Plant Molecular Biology 49, 611641.
Singh, S., Thomaeus, S., Lee, M., Stymne, S. and Green, A. (2001) Transgenic expression of a Δ 12 -epoxygenase gene in Arabidopsis seeds inhibits accumulation of linoleic acid. Planta 212, 872879.
Singh, S.P., Zhou, X.R., Liu, Q., Stymne, S. and Green, A.G. (2005) Metabolic engineering of new fatty acids in plants. Current Opinion in Plant Biology 8, 197203.
Smith, C.R.J. (1970) Occurrence of unusual fatty acids in plants. Progress in the Chemistry of Fats and Other Lipids 11, 139177.
Sperling, P., Lee, M., Girke, T., Zähringer, U., Stymne, S. and Heinz, E. (2000) A bifunctional Δ 6 -fatty acyl acetylenase/desaturase from the moss Ceratodon purpureus. A new member of the cytochrome b 5 superfamily. European Journal of Biochemistry 267, 38013811.
Stahl, U., Carlsson, A.S., Lenman, M., Dahlqvist, A., Huang, B., Banas, W., Banas, A. and Stymne, S. (2004) Cloning and functional characterization of a phospholipid:diacylglycerol acyltransferase from Arabidopsis. Plant Physiology 135, 13241335.
Stender, S. and Dyerberg, J. (2004) Influence of trans fatty acids on health. Annals of Nutrition and Metabolism 48, 6166.
Stoutjesdijk, P.A., Singh, S.P., Liu, Q., Hurlstone, C.J., Waterhouse, P.A. and Green, A.G. (2002) hpRNA-mediated targeting of the Arabidopsis FAD2 gene gives highly efficient and stable silencing. Plant Physiology 129, 17231731.
Suh, M.C., Schultz, D.J. and Ohlrogge, J.B. (2002) What limits production of unusual monoenoic fatty acids in transgenic plants?. Planta 215, 584595.
Thelen, J.J. and Ohlrogge, J.B. (2002) Metabolic engineering of fatty acid biosynthesis in plants. Metabolic Engineering 4, 1221.
van de, Loo F.J., Broun, P., Turner, S. and Somerville, C. (1995) An oleate 12-hydroxylase from Ricinus communis L. is a fatty acyl desaturase homolog. Proceedings of the National Academy of Sciences, USA 92, 67436747.
Voelker, T. and Kinney, A.J. (2001) Variations in the biosynthesis of seed-storage lipids. Annual Review of Plant Physiology and Plant Molecular Biology 52, 335361.
Voelker, T.A., Worrell, A.C., Anderson, L., Bleibaum, J., Fan, C., Hawkins, D.J., Radke, S.E. and Davies, H.M. (1992) Fatty acid biosynthesis redirected to medium chains in transgenic oilseed plants. Science 257, 7274.
Voelker, T.A., Hayes, T.R., Cranmer, A.M., Turner, J.C. and Davies, H.M. (1996) Genetic engineering of a quantitative trait: metabolic and genetic parameters influencing the accumulation of laurate in rapeseed. Plant Journal 9, 229241.
Weber, N., Richter, K.D., Schulte, E. and Mukherjee, K.D. (1995) Petroselinic acid from dietary triacylglycerols reduces the concentration of arachidonic acid in tissue lipids of rats. Journal of Nutrition 125, 15631568.
Zou, J., Katavic, V., Giblin, E.M., Barton, D.L., MacKenzie, S.L., Keller, W.A. Hu, X., Taylor D.C. (1997) Modification of seed oil content and acyl composition in the Brassicaceae by expression of a yeast sn-2 acyltransferase gene. Plant Cell 9, 909923.


Related content

Powered by UNSILO

Development and potential of genetically engineered oilseeds

  • John M. Dyer (a1) and Robert T. Mullen (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.